These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24984254)

  • 1. Resonance-enhanced microfluidic impedance cytometer for detection of single bacteria.
    Haandbæk N; With O; Bürgel SC; Heer F; Hierlemann A
    Lab Chip; 2014 Sep; 14(17):3313-24. PubMed ID: 24984254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria.
    Bernabini C; Holmes D; Morgan H
    Lab Chip; 2011 Feb; 11(3):407-12. PubMed ID: 21060945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of subcellular morphology of single yeast cells using high frequency microfluidic impedance cytometer.
    Haandbæk N; Bürgel SC; Heer F; Hierlemann A
    Lab Chip; 2014 Jan; 14(2):369-77. PubMed ID: 24264643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer.
    Barat D; Spencer D; Benazzi G; Mowlem MC; Morgan H
    Lab Chip; 2012 Jan; 12(1):118-26. PubMed ID: 22051732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An easy-fabricated and disposable polymer-film microfluidic impedance cytometer for cell sensing.
    Zhu S; Zhang X; Chen M; Tang D; Han Y; Xiang N; Ni Z
    Anal Chim Acta; 2021 Aug; 1175():338759. PubMed ID: 34330437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cost-effective portable microfluidic impedance cytometer for broadband impedance cell analysis based on viscoelastic focusing.
    Tang D; Jiang L; Tang W; Xiang N; Ni Z
    Talanta; 2022 May; 242():123274. PubMed ID: 35144068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexed detection of bacteria and toxins using a microflow cytometer.
    Kim JS; Anderson GP; Erickson JS; Golden JP; Nasir M; Ligler FS
    Anal Chem; 2009 Jul; 81(13):5426-32. PubMed ID: 19496600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On chip droplet characterization: a practical, high-sensitivity measurement of droplet impedance in digital microfluidics.
    Sadeghi S; Ding H; Shah GJ; Chen S; Keng PY; Kim CJ; van Dam RM
    Anal Chem; 2012 Feb; 84(4):1915-23. PubMed ID: 22248060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence.
    Joo S; Kim KH; Kim HC; Chung TD
    Biosens Bioelectron; 2010 Feb; 25(6):1509-15. PubMed ID: 20004091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber probe based microfluidic raman spectroscopy.
    Ashok PC; Singh GP; Tan KM; Dholakia K
    Opt Express; 2010 Apr; 18(8):7642-9. PubMed ID: 20588604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impedance spectroscopy and optical analysis of single biological cells and organisms in microsystems.
    Gawad S; Holmes D; Benazzi G; Renaud P; Morgan H
    Methods Mol Biol; 2010; 583():149-82. PubMed ID: 19763464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel.
    Kim KS; Park JK
    Lab Chip; 2005 Jun; 5(6):657-64. PubMed ID: 15915258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences.
    Sun T; Holmes D; Gawad S; Green NG; Morgan H
    Lab Chip; 2007 Aug; 7(8):1034-40. PubMed ID: 17653346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic paper-based devices for bioanalytical applications.
    Santhiago M; Nery EW; Santos GP; Kubota LT
    Bioanalysis; 2014 Jan; 6(1):89-106. PubMed ID: 24341497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic beads-based immunosensor for sensitive detection of cancer biomarker proteins using multienzyme-nanoparticle amplification and quantum dots labels.
    Zhang H; Liu L; Fu X; Zhu Z
    Biosens Bioelectron; 2013 Apr; 42():23-30. PubMed ID: 23202325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective electrochemical detection of dopamine in a microfluidic channel on carbon nanoparticulate electrodes.
    Rozniecka E; Jonsson-Niedziolka M; Celebanska A; Niedziolka-Jonsson J; Opallo M
    Analyst; 2014 Jun; 139(11):2896-903. PubMed ID: 24757708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics.
    Tung YC; Torisawa YS; Futai N; Takayama S
    Lab Chip; 2007 Nov; 7(11):1497-503. PubMed ID: 17960277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potentiometric multichannel cytometer microchip for high-throughput microdispersion analysis.
    Kim J; Kim EG; Bae S; Kwon S; Chun H
    Anal Chem; 2013 Jan; 85(1):362-8. PubMed ID: 23181566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell analysis of yeast, mammalian cells, and fungal spores with a microfluidic pressure-driven chip-based system.
    Palková Z; Váchová L; Valer M; Preckel T
    Cytometry A; 2004 Jun; 59(2):246-53. PubMed ID: 15170604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.