BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24984464)

  • 1. [Purification and characterization of the biosurfactant rhamnolipid].
    Liu Y; Zhong H; Liu Z; Jiang Y; Tan F; Zeng G; Lai M; He Y
    Se Pu; 2014 Mar; 32(3):248-55. PubMed ID: 24984464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production and characterization of rhamnolipid using palm oil agricultural refinery waste.
    Radzuan MN; Banat IM; Winterburn J
    Bioresour Technol; 2017 Feb; 225():99-105. PubMed ID: 27888734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characterization of rhamnolipid produced by Pseudomonas aeruginosa strain FIN2 isolated from oil reservoir water.
    Liu JF; Wu G; Yang SZ; Mu BZ
    World J Microbiol Biotechnol; 2014 May; 30(5):1473-84. PubMed ID: 24297330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation.
    Lotfabad TB; Abassi H; Ahmadkhaniha R; Roostaazad R; Masoomi F; Zahiri HS; Ahmadian G; Vali H; Noghabi KA
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):397-405. PubMed ID: 20732795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D.
    George S; Jayachandran K
    J Appl Microbiol; 2013 Feb; 114(2):373-83. PubMed ID: 23164038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source.
    George S; Jayachandran K
    Appl Biochem Biotechnol; 2009 Sep; 158(3):694-705. PubMed ID: 18716921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of monorhamnolipid and dirhamnolipid on two Pseudomonas aeruginosa strains and the effect on cell surface hydrophobicity.
    Zhong H; Zeng GM; Liu JX; Xu XM; Yuan XZ; Fu HY; Huang GH; Liu ZF; Ding Y
    Appl Microbiol Biotechnol; 2008 Jun; 79(4):671-7. PubMed ID: 18443784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical characterization and physical and biological activities of rhamnolipids produced by Pseudomonas aeruginosa BN10.
    Christova N; Tuleva B; Cohenb R; Ivanova G; Stoevd G; Stoilova-Disheva M; Stoineva I
    Z Naturforsch C J Biosci; 2011; 66(7-8):394-402. PubMed ID: 21950164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI.
    Nitschke M; Costa SG; Haddad R; Gonçalves LA; Eberlin MN; Contiero J
    Biotechnol Prog; 2005; 21(5):1562-6. PubMed ID: 16209563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of rhamnolipid surfactant and its application in bioscouring of cotton fabric.
    Raza ZA; Rehman A; Hussain MT; Masood R; Ul Haq A; Saddique MT; Javid A; Ahmad N
    Carbohydr Res; 2014 Jun; 391():97-105. PubMed ID: 24792318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and applications of a rhamnolipid surfactant produced in soybean oil waste.
    Nitschke M; Costa SG; Contiero J
    Appl Biochem Biotechnol; 2010 Apr; 160(7):2066-74. PubMed ID: 19649781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foam adsorption as an ex situ capture step for surfactants produced by fermentation.
    Anic I; Nath A; Franco P; Wichmann R
    J Biotechnol; 2017 Sep; 258():181-189. PubMed ID: 28723386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2.
    Chen SY; Lu WB; Wei YH; Chen WM; Chang JS
    Biotechnol Prog; 2007; 23(3):661-6. PubMed ID: 17461551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of rhamnolipid biosurfactants by methylene blue complexation.
    Pinzon NM; Ju LK
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):975-81. PubMed ID: 19214498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative determination of rhamnolipid using HPLC-UV through carboxyl labeling.
    Zhou J; Miao SJ; Yang SZ; Liu JF; Gang HZ; Mu BZ
    Biotechnol Appl Biochem; 2023 Dec; 70(6):1806-1816. PubMed ID: 37278163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge.
    Bharali P; Konwar BK
    Appl Biochem Biotechnol; 2011 Aug; 164(8):1444-60. PubMed ID: 21468636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Construction and optimization of Escherichia coli for producing rhamnolipid biosurfactant].
    Gong Z; Peng Y; Zhang Y; Song G; Chen W; Jia S; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2015 Jul; 31(7):1050-62. PubMed ID: 26647580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells.
    Bagheri Lotfabad T; Ebadipour N; Roostaazad R; Partovi M; Bahmaei M
    Colloids Surf B Biointerfaces; 2017 Apr; 152():159-168. PubMed ID: 28110037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1.
    Sood U; Singh DN; Hira P; Lee JK; Kalia VC; Lal R; Shakarad M
    J Biotechnol; 2020 Jan; 307():98-106. PubMed ID: 31705932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.
    Amani H; Müller MM; Syldatk C; Hausmann R
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.