BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24984505)

  • 1. [Reconstructing habitat history of Larimichthys polyactis in Lüsi coastal waters of Jiangsu Province, China based on otolith microchemistry].
    Xiong Y; Liu HB; Liu PT; Tang JH; Yang J; Jiang T; Wu L; Gao YS; Shi JJ
    Ying Yong Sheng Tai Xue Bao; 2014 Mar; 25(3):836-42. PubMed ID: 24984505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative reconstruction of salinity history by otolith oxygen stable isotopes: An example of a euryhaline fish Lateolabrax japonicus.
    Hsieh Y; Shiao JC; Lin SW; Iizuka Y
    Rapid Commun Mass Spectrom; 2019 Aug; 33(16):1344-1354. PubMed ID: 31046159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial and temporal variability in the otolith chemistry of the Brazilian snapper Lutjanus alexandrei from estuarine and coastal environments.
    Aschenbrenner A; Ferreira BP; Rooker JR
    J Fish Biol; 2016 Jul; 89(1):753-69. PubMed ID: 27255666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is otolith microchemistry (Sr: Ca and Ba:Ca ratios) useful to identify Mugil curema populations in the southeastern Caribbean Sea?
    Avigliano E; Callicó-Fortunato R; Buitrago J; Volpedo AV
    Braz J Biol; 2015 Nov; 75(4 Suppl 1):S45-51. PubMed ID: 26628220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing larval growth and habitat use in an amphidromous goby using otolith increments and microchemistry.
    Hogan JD; Kozdon R; Blum MJ; Gilliam JF; Valley JW; McIntyre PB
    J Fish Biol; 2017 Apr; 90(4):1338-1355. PubMed ID: 27990639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leave forever or return home? The case of the whitemouth croaker Micropogonias furnieri in coastal systems of southeastern Brazil indicated by otolith microchemistry.
    Franco TP; Albuquerque CQ; Santos RS; Saint'Pierre TD; Araújo FG
    Mar Environ Res; 2019 Feb; 144():28-35. PubMed ID: 30527444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using otolith microchemistry and shape to assess the habitat value of oil structures for reef fish.
    Fowler AM; Macreadie PI; Bishop DP; Booth DJ
    Mar Environ Res; 2015 May; 106():103-13. PubMed ID: 25800861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using otolith chemical and structural analysis to investigate reservoir habitat use by juvenile Chinook salmon Oncorhynchus tshawytscha.
    Bourret SL; Kennedy BP; Caudill CC; Chittaro PM
    J Fish Biol; 2014 Nov; 85(5):1507-25. PubMed ID: 25229130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of life history and population connectivity of threadfin fish Eleutheronema tetradactylum along the coastal waters of Southern China.
    Xuan Z; Wang WX
    Sci Rep; 2023 Mar; 13(1):3976. PubMed ID: 36894664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of otolith chemistry to characterize diadromous migrations.
    Walther BD; Limburg KE
    J Fish Biol; 2012 Jul; 81(2):796-825. PubMed ID: 22803736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What otolith microchemistry and stable isotope analysis reveal and conceal about anguillid eel movements across salinity boundaries.
    Clément M; Chiasson AG; Veinott G; Cairns DK
    Oecologia; 2014 Aug; 175(4):1143-53. PubMed ID: 24889970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential uses of coral reef habitats by a poorly-known cryptic fish predator.
    Morat F; Briand MJ; Pécheyran C; Letourneur Y
    J Fish Biol; 2019 Jan; 94(1):53-61. PubMed ID: 30367721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking otolith microchemistry and surface water contamination from natural gas mining.
    Keller DH; Zelanko PM; Gagnon JE; Horwitz RJ; Galbraith HS; Velinsky DJ
    Environ Pollut; 2018 Sep; 240():457-465. PubMed ID: 29754095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactive effects of strontium and barium water concentration on otolith incorporation in juvenile flounder Paralichthys olivaceus.
    Tian H; Liu J; Cao L; Dou S
    PLoS One; 2019; 14(6):e0218446. PubMed ID: 31199846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The great melting pot. Common sole population connectivity assessed by otolith and water fingerprints.
    Morat F; Letourneur Y; Dierking J; Pécheyran C; Bareille G; Blamart D; Harmelin-Vivien M
    PLoS One; 2014; 9(1):e86585. PubMed ID: 24475151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond laser ablation ICP-MS measurement of otolith Sr:Ca and Ba:Ca composition reveal differential use of freshwater habitats for three amphidromous Sicyopterus (Teleostei: Gobioidei: Sicydiinae) species.
    Lord C; Tabouret H; Claverie F; Pécheyran C; Keith P
    J Fish Biol; 2011 Nov; 79(5):1304-21. PubMed ID: 22026607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking otolith microchemistry and dendritic isoscapes to map heterogeneous production of fish across river basins.
    Brennan SR; Schindler DE
    Ecol Appl; 2017 Mar; 27(2):363-377. PubMed ID: 27875020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Otolith microchemistry of tuna species: research progress].
    Zhu GP
    Ying Yong Sheng Tai Xue Bao; 2011 Aug; 22(8):2211-8. PubMed ID: 22097389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of water chemistry and fish condition to otolith chemistry: comparisons across salinity environments.
    Izzo C; Doubleday ZA; Schultz AG; Woodcock SH; Gillanders BM
    J Fish Biol; 2015 Jun; 86(6):1680-98. PubMed ID: 26033292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature dependency of element incorporation into European eel (Anguilla anguilla) otoliths.
    Marohn L; Hilge V; Zumholz K; Klügel A; Anders H; Hanel R
    Anal Bioanal Chem; 2011 Feb; 399(6):2175-84. PubMed ID: 21107822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.