These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2498475)

  • 21. Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments.
    Okano T; Kojima D; Fukada Y; Shichida Y; Yoshizawa T
    Proc Natl Acad Sci U S A; 1992 Jul; 89(13):5932-6. PubMed ID: 1385866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The possible presence of a visual pigment in a sensory receptor of the antenna of a cave coleoptera Speophyes lucidulus Delar (Bathysciinae)].
    Corbière-Tichané G
    Vision Res; 1974 Sep; 14(9):819-22. PubMed ID: 4417276
    [No Abstract]   [Full Text] [Related]  

  • 23. Fluorescence lifetime microscopy reveals the biologically-related photophysical heterogeneity of oxyblepharismin in light-adapted (blue) Blepharisma japonicum cells.
    Checcucci G; Storti B; Ghetti F; Signore G; Bizzarri R
    Photochem Photobiol Sci; 2017 Oct; 16(10):1502-1511. PubMed ID: 28636018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A rhodopsin immunoanalog in the related photosensitive protozoans Blepharisma japonicum and Stentor coeruleus.
    Fabczak H; Sobierajska K; Fabczak S
    Photochem Photobiol Sci; 2008 Sep; 7(9):1041-5. PubMed ID: 18754050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proton release from Stentor photoreceptors in the excited states.
    Song PS; Walker EB; Auerbach RA; Robinson GW
    Biophys J; 1981 Aug; 35(2):551-5. PubMed ID: 6791722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amethystin, the coloring principle of Stentor amethystinus.
    Höfle G; Reinecke S; Laude U; Spitzner D
    J Nat Prod; 2014 Jun; 77(6):1383-9. PubMed ID: 24882688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular sensory physiology of Euglena.
    Checcucci A
    Naturwissenschaften; 1976 Sep; 63(9):412-7. PubMed ID: 9595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical and spectroscopic characterization of the blue-green photoreceptor in Halobacterium halobium.
    Scherrer P; McGinnis K; Bogomolni RA
    Proc Natl Acad Sci U S A; 1987 Jan; 84(2):402-6. PubMed ID: 3467364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and characterization fo some UV-induced mutants of Chlorella vulgaris Prings.
    Solomon MJ; Crane FA
    J Pharm Sci; 1968 Dec; 57(12):2038-44. PubMed ID: 5708339
    [No Abstract]   [Full Text] [Related]  

  • 30. Distinguishing Activities in the Photodynamic Arsenals of the Pigmented Ciliates Blepharisma sinuosum Sawaya, 1940 and Blepharisma japonicum Suzuki, 1954 (Ciliophora: Heterotrichea).
    Cavaleiro J; Oliveira NB; Ribeiro TA; Guimarães LF; Fernandes NM; da Silva-Neto ID; Marszaukowski F; Wohnrath K; Barreto CB; Schweikert M; Petroni G; Ortenzi C; Buonanno F; Picciani PHS; Oliveira ON; Soares CAG
    Photochem Photobiol; 2020 Nov; 96(6):1251-1266. PubMed ID: 32472704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maristentorin, a novel pigment from the positively phototactic marine ciliate Maristentor dinoferus, is structurally related to hypericin and stentorin.
    Mukherjee P; Fulton DB; Halder M; Han X; Armstrong DW; Petrich JW; Lobban CS
    J Phys Chem B; 2006 Mar; 110(12):6359-64. PubMed ID: 16553454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple visual pigments in a photoreceptor of the salamander retina.
    Makino CL; Dodd RL
    J Gen Physiol; 1996 Jul; 108(1):27-34. PubMed ID: 8817382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. All-trans-retinal is the chromophore bound to the photoreceptor of the alga Chlamydomonas reinhardtii.
    Derguini F; Mazur P; Nakanishi K; Starace DM; Saranak J; Foster KW
    Photochem Photobiol; 1991 Dec; 54(6):1017-21. PubMed ID: 1775526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative studies on the late bleaching processes of four kinds of cone visual pigments and rod visual pigment.
    Sato K; Yamashita T; Imamoto Y; Shichida Y
    Biochemistry; 2012 May; 51(21):4300-8. PubMed ID: 22571736
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescence of photoreceptor cells observed in vivo.
    Franceschini N; Kirschfeld K; Minke B
    Science; 1981 Sep; 213(4513):1264-7. PubMed ID: 7268434
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of visual pigment photoproducts in transduction in invertebrate photoreceptors.
    Hillman P
    Isr J Med Sci; 1982 Jan; 18(1):141-3. PubMed ID: 7068337
    [No Abstract]   [Full Text] [Related]  

  • 37. Genetic demonstration of a sensory rhodopsin in bacteria.
    Spudich JL
    Prog Clin Biol Res; 1984; 164():221-9. PubMed ID: 6522400
    [No Abstract]   [Full Text] [Related]  

  • 38. Action spectra for photoaccumulation of green and colorless Euglena: evidence for identification of receptor pigments.
    Checcucci A; Colombetti G; Ferrara R; Lenci F
    Photochem Photobiol; 1976 Jan; 23(1):51-4. PubMed ID: 817337
    [No Abstract]   [Full Text] [Related]  

  • 39. The photoreceptor in Stentor coeruleus.
    Song PS; Tapley KJ; Berlin JD
    Symp Soc Exp Biol; 1983; 36():503-20. PubMed ID: 6443330
    [No Abstract]   [Full Text] [Related]  

  • 40. The effect of potassium iodide on photophobic responses in Euglena: evidence for two photoreceptor pigments.
    Mikolajczyk E; Diehn B
    Photochem Photobiol; 1975 Dec; 22(6):269-71. PubMed ID: 814554
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.