BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

667 related articles for article (PubMed ID: 24984853)

  • 1. CRISPR/Cas9-Directed Genome Editing of Cultured Cells.
    Yang L; Yang JL; Byrne S; Pan J; Church GM
    Curr Protoc Mol Biol; 2014 Jul; 107():31.1.1-31.1.17. PubMed ID: 24984853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs.
    Fu Y; Reyon D; Joung JK
    Methods Enzymol; 2014; 546():21-45. PubMed ID: 25398334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9-Mediated Mutagenesis of Human Pluripotent Stem Cells in Defined Xeno-Free E8 Medium.
    Soh CL; Huangfu D
    Methods Mol Biol; 2017; 1498():57-78. PubMed ID: 27709569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Efficient genome editing in human pluripotent stem cells through CRISPR/Cas9].
    Liu GG; Li S; Wei YD; Zhang YX; Ding QR
    Yi Chuan; 2015 Nov; 37(11):1167-73. PubMed ID: 26582531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells.
    Hendel A; Bak RO; Clark JT; Kennedy AB; Ryan DE; Roy S; Steinfeld I; Lunstad BD; Kaiser RJ; Wilkens AB; Bacchetta R; Tsalenko A; Dellinger D; Bruhn L; Porteus MH
    Nat Biotechnol; 2015 Sep; 33(9):985-989. PubMed ID: 26121415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9 gene-editing strategies in cardiovascular cells.
    Vermersch E; Jouve C; Hulot JS
    Cardiovasc Res; 2020 Apr; 116(5):894-907. PubMed ID: 31584620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas-mediated targeted genome editing in human cells.
    Yang L; Mali P; Kim-Kiselak C; Church G
    Methods Mol Biol; 2014; 1114():245-67. PubMed ID: 24557908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Control of Genome Editing by Photoactivatable Cas9.
    Otabe T; Nihongaki Y; Sato M
    Methods Mol Biol; 2021; 2312():225-233. PubMed ID: 34228293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doxycycline-Dependent Self-Inactivation of CRISPR-Cas9 to Temporally Regulate On- and Off-Target Editing.
    Kelkar A; Zhu Y; Groth T; Stolfa G; Stablewski AB; Singhi N; Nemeth M; Neelamegham S
    Mol Ther; 2020 Jan; 28(1):29-41. PubMed ID: 31601489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9.
    Yumlu S; Stumm J; Bashir S; Dreyer AK; Lisowski P; Danner E; Kühn R
    Methods; 2017 May; 121-122():29-44. PubMed ID: 28522326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9-Guided Genome Engineering in C. elegans.
    Kim HM; Colaiácovo MP
    Curr Protoc Mol Biol; 2016 Jul; 115():31.7.1-31.7.18. PubMed ID: 27366893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TEAD4 regulates trophectoderm differentiation upstream of CDX2 in a GATA3-independent manner in the human preimplantation embryo.
    Stamatiadis P; Cosemans G; Boel A; Menten B; De Sutter P; Stoop D; Chuva de Sousa Lopes SM; Lluis F; Coucke P; Heindryckx B
    Hum Reprod; 2022 Jul; 37(8):1760-1773. PubMed ID: 35700449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption.
    Johansen AK; Molenaar B; Versteeg D; Leitoguinho AR; Demkes C; Spanjaard B; de Ruiter H; Akbari Moqadam F; Kooijman L; Zentilin L; Giacca M; van Rooij E
    Circ Res; 2017 Oct; 121(10):1168-1181. PubMed ID: 28851809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic CRISPR RNA-Cas9-guided genome editing in human cells.
    Rahdar M; McMahon MA; Prakash TP; Swayze EE; Bennett CF; Cleveland DW
    Proc Natl Acad Sci U S A; 2015 Dec; 112(51):E7110-7. PubMed ID: 26589814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential pitfalls of CRISPR/Cas9-mediated genome editing.
    Peng R; Lin G; Li J
    FEBS J; 2016 Apr; 283(7):1218-31. PubMed ID: 26535798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly multiplexed genome engineering using CRISPR/Cas9 gRNA arrays.
    Kurata M; Wolf NK; Lahr WS; Weg MT; Kluesner MG; Lee S; Hui K; Shiraiwa M; Webber BR; Moriarity BS
    PLoS One; 2018; 13(9):e0198714. PubMed ID: 30222773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-Mediated Genome Editing in Epstein-Barr Virus-Transformed Lymphoblastoid B-Cell Lines.
    Jiang S; Wang LW; Walsh MJ; Trudeau SJ; Gerdt C; Zhao B; Gewurz BE
    Curr Protoc Mol Biol; 2018 Jan; 121():31.12.1-31.12.23. PubMed ID: 29337376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9 in Genome Editing and Beyond.
    Wang H; La Russa M; Qi LS
    Annu Rev Biochem; 2016 Jun; 85():227-64. PubMed ID: 27145843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TALEN- and CRISPR/Cas9-Mediated Gene Editing in Human Pluripotent Stem Cells Using Lipid-Based Transfection.
    Hendriks WT; Jiang X; Daheron L; Cowan CA
    Curr Protoc Stem Cell Biol; 2015 Aug; 34():5B.3.1-5B.3.25. PubMed ID: 26237572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.