These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 24984858)

  • 1. The Arabidopsis Kinome: phylogeny and evolutionary insights into functional diversification.
    Zulawski M; Schulze G; Braginets R; Hartmann S; Schulze WX
    BMC Genomics; 2014 Jul; 15(1):548. PubMed ID: 24984858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The plant kinome.
    Zulawski M; Schulze WX
    Methods Mol Biol; 2015; 1306():1-23. PubMed ID: 25930690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic trans-genomic comparison of protein kinases between Arabidopsis and Saccharomyces cerevisiae.
    Wang D; Harper JF; Gribskov M
    Plant Physiol; 2003 Aug; 132(4):2152-65. PubMed ID: 12913170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of evolutionary dynamics of genes encoding leucine-rich repeat receptor-like kinase between rice and Arabidopsis.
    Hwang SG; Kim DS; Jang CS
    Genetica; 2011 Aug; 139(8):1023-32. PubMed ID: 21879323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction and Curation of Gene Models for Plant Receptor Kinases for Phylogenetic Analysis.
    Vaattovaara A; Salojärvi J; Wrzaczek M
    Methods Mol Biol; 2017; 1621():79-91. PubMed ID: 28567645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide identification and analysis of MAPK and MAPKK gene families in Brachypodium distachyon.
    Chen L; Hu W; Tan S; Wang M; Ma Z; Zhou S; Deng X; Zhang Y; Huang C; Yang G; He G
    PLoS One; 2012; 7(10):e46744. PubMed ID: 23082129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis.
    Shiu SH; Bleecker AB
    Plant Physiol; 2003 Jun; 132(2):530-43. PubMed ID: 12805585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana.
    Cannon SB; Mitra A; Baumgarten A; Young ND; May G
    BMC Plant Biol; 2004 Jun; 4():10. PubMed ID: 15171794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soybean kinome: functional classification and gene expression patterns.
    Liu J; Chen N; Grant JN; Cheng ZM; Stewart CN; Hewezi T
    J Exp Bot; 2015 Apr; 66(7):1919-34. PubMed ID: 25614662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different gene families in Arabidopsis thaliana transposed in different epochs and at different frequencies throughout the rosids.
    Woodhouse MR; Tang H; Freeling M
    Plant Cell; 2011 Dec; 23(12):4241-53. PubMed ID: 22180627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary history and functional divergence of the cytochrome P450 gene superfamily between Arabidopsis thaliana and Brassica species uncover effects of whole genome and tandem duplications.
    Yu J; Tehrim S; Wang L; Dossa K; Zhang X; Ke T; Liao B
    BMC Genomics; 2017 Sep; 18(1):733. PubMed ID: 28923019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide identification and evolutionary analysis of leucine-rich repeat receptor-like protein kinase genes in soybean.
    Zhou F; Guo Y; Qiu LJ
    BMC Plant Biol; 2016 Mar; 16():58. PubMed ID: 26935840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli.
    Hanada K; Zou C; Lehti-Shiu MD; Shinozaki K; Shiu SH
    Plant Physiol; 2008 Oct; 148(2):993-1003. PubMed ID: 18715958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extensive divergence in alternative splicing patterns after gene and genome duplication during the evolutionary history of Arabidopsis.
    Zhang PG; Huang SZ; Pin AL; Adams KL
    Mol Biol Evol; 2010 Jul; 27(7):1686-97. PubMed ID: 20185454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fate of tandemly duplicated genes assessed by the expression analysis of a group of Arabidopsis thaliana RING-H2 ubiquitin ligase genes of the ATL family.
    Aguilar-Hernández V; Guzmán P
    Plant Mol Biol; 2014 Mar; 84(4-5):429-41. PubMed ID: 24135966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Duplication and diversification of lectin receptor-like kinases (LecRLK) genes in soybean.
    Liu PL; Huang Y; Shi PH; Yu M; Xie JB; Xie L
    Sci Rep; 2018 Apr; 8(1):5861. PubMed ID: 29651041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of gene duplication in the evolution of genomic imprinting revealed by molecular evolutionary analysis of the type I MADS-box gene family in Arabidopsis species.
    Yoshida T; Kawabe A
    PLoS One; 2013; 8(9):e73588. PubMed ID: 24039992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A complex interplay of tandem- and whole-genome duplication drives expansion of the L-type lectin receptor kinase gene family in the brassicaceae.
    Hofberger JA; Nsibo DL; Govers F; Bouwmeester K; Schranz ME
    Genome Biol Evol; 2015 Jan; 7(3):720-34. PubMed ID: 25635042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice.
    Shiu SH; Karlowski WM; Pan R; Tzeng YH; Mayer KF; Li WH
    Plant Cell; 2004 May; 16(5):1220-34. PubMed ID: 15105442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the origin and evolution of plant brassinosteroid receptor kinases.
    Wang H; Mao H
    J Mol Evol; 2014 Feb; 78(2):118-29. PubMed ID: 24370731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.