These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 24985203)
1. A Cyclin T1 point mutation that abolishes positive transcription elongation factor (P-TEFb) binding to Hexim1 and HIV tat. Verstraete N; Kuzmina A; Diribarne G; Nguyen VT; Kobbi L; Ludanyi M; Taube R; Bensaude O Retrovirology; 2014 Jul; 11():50. PubMed ID: 24985203 [TBL] [Abstract][Full Text] [Related]
2. A single point mutation in cyclin T1 eliminates binding to Hexim1, Cdk9 and RNA but not to AFF4 and enforces repression of HIV transcription. Kuzmina A; Verstraete N; Galker S; Maatook M; Bensaude O; Taube R Retrovirology; 2014 Jul; 11():51. PubMed ID: 24985467 [TBL] [Abstract][Full Text] [Related]
3. Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription. Barboric M; Yik JH; Czudnochowski N; Yang Z; Chen R; Contreras X; Geyer M; Matija Peterlin B; Zhou Q Nucleic Acids Res; 2007; 35(6):2003-12. PubMed ID: 17341462 [TBL] [Abstract][Full Text] [Related]
4. A human immunodeficiency virus type 1 Tat-like arginine-rich RNA-binding domain is essential for HEXIM1 to inhibit RNA polymerase II transcription through 7SK snRNA-mediated inactivation of P-TEFb. Yik JH; Chen R; Pezda AC; Samford CS; Zhou Q Mol Cell Biol; 2004 Jun; 24(12):5094-105. PubMed ID: 15169877 [TBL] [Abstract][Full Text] [Related]
5. Identification of a cyclin T-binding domain in Hexim1 and biochemical analysis of its binding competition with HIV-1 Tat. Schulte A; Czudnochowski N; Barboric M; Schönichen A; Blazek D; Peterlin BM; Geyer M J Biol Chem; 2005 Jul; 280(26):24968-77. PubMed ID: 15855166 [TBL] [Abstract][Full Text] [Related]
6. Functional characterization of a human cyclin T1 mutant reveals a different binding surface for Tat and HEXIM1. Kuzmina A; Hadad U; Fujinaga K; Taube R Virology; 2012 May; 426(2):152-61. PubMed ID: 22342181 [TBL] [Abstract][Full Text] [Related]
7. Controlling cellular P-TEFb activity by the HIV-1 transcriptional transactivator Tat. Muniz L; Egloff S; Ughy B; Jády BE; Kiss T PLoS Pathog; 2010 Oct; 6(10):e1001152. PubMed ID: 20976203 [TBL] [Abstract][Full Text] [Related]
8. Human T-lymphotropic virus type 1 Tax protein complexes with P-TEFb and competes for Brd4 and 7SK snRNP/HEXIM1 binding. Cho WK; Jang MK; Huang K; Pise-Masison CA; Brady JN J Virol; 2010 Dec; 84(24):12801-9. PubMed ID: 20926576 [TBL] [Abstract][Full Text] [Related]
9. Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. Michels AA; Fraldi A; Li Q; Adamson TE; Bonnet F; Nguyen VT; Sedore SC; Price JP; Price DH; Lania L; Bensaude O EMBO J; 2004 Jul; 23(13):2608-19. PubMed ID: 15201869 [TBL] [Abstract][Full Text] [Related]
10. Acetylation of cyclin T1 regulates the equilibrium between active and inactive P-TEFb in cells. Cho S; Schroeder S; Kaehlcke K; Kwon HS; Pedal A; Herker E; Schnoelzer M; Ott M EMBO J; 2009 May; 28(10):1407-17. PubMed ID: 19387490 [TBL] [Abstract][Full Text] [Related]
11. Manipulation of P-TEFb control machinery by HIV: recruitment of P-TEFb from the large form by Tat and binding of HEXIM1 to TAR. Sedore SC; Byers SA; Biglione S; Price JP; Maury WJ; Price DH Nucleic Acids Res; 2007; 35(13):4347-58. PubMed ID: 17576689 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of Tat activity by the HEXIM1 protein. Fraldi A; Varrone F; Napolitano G; Michels AA; Majello B; Bensaude O; Lania L Retrovirology; 2005 Jul; 2():42. PubMed ID: 15992410 [TBL] [Abstract][Full Text] [Related]
13. The mechanism of release of P-TEFb and HEXIM1 from the 7SK snRNP by viral and cellular activators includes a conformational change in 7SK. Krueger BJ; Varzavand K; Cooper JJ; Price DH PLoS One; 2010 Aug; 5(8):e12335. PubMed ID: 20808803 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4. Gu J; Babayeva ND; Suwa Y; Baranovskiy AG; Price DH; Tahirov TH Cell Cycle; 2014; 13(11):1788-97. PubMed ID: 24727379 [TBL] [Abstract][Full Text] [Related]
15. Transcription-dependent association of multiple positive transcription elongation factor units to a HEXIM multimer. Dulac C; Michels AA; Fraldi A; Bonnet F; Nguyen VT; Napolitano G; Lania L; Bensaude O J Biol Chem; 2005 Aug; 280(34):30619-29. PubMed ID: 15994294 [TBL] [Abstract][Full Text] [Related]
16. Phosphorylation of HEXIM1 at Tyr271 and Tyr274 Promotes Release of P-TEFb from the 7SK snRNP Complex and Enhances Proviral HIV Gene Expression. Mbonye UR; Wang B; Gokulrangan G; Chance MR; Karn J Proteomics; 2015 Jun; 15(12):2078-86. PubMed ID: 25900325 [TBL] [Abstract][Full Text] [Related]
17. MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner. Michels AA; Nguyen VT; Fraldi A; Labas V; Edwards M; Bonnet F; Lania L; Bensaude O Mol Cell Biol; 2003 Jul; 23(14):4859-69. PubMed ID: 12832472 [TBL] [Abstract][Full Text] [Related]
18. Release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein (snRNP) activates hexamethylene bisacetamide-inducible protein (HEXIM1) transcription. Liu P; Xiang Y; Fujinaga K; Bartholomeeusen K; Nilson KA; Price DH; Peterlin BM J Biol Chem; 2014 Apr; 289(14):9918-25. PubMed ID: 24515107 [TBL] [Abstract][Full Text] [Related]
19. Transition step during assembly of HIV Tat:P-TEFb transcription complexes and transfer to TAR RNA. D'Orso I; Jang GM; Pastuszak AW; Faust TB; Quezada E; Booth DS; Frankel AD Mol Cell Biol; 2012 Dec; 32(23):4780-93. PubMed ID: 23007159 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the large inactive P-TEFb complex indicates that it contains one 7SK molecule, a dimer of HEXIM1 or HEXIM2, and two P-TEFb molecules containing Cdk9 phosphorylated at threonine 186. Li Q; Price JP; Byers SA; Cheng D; Peng J; Price DH J Biol Chem; 2005 Aug; 280(31):28819-26. PubMed ID: 15965233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]