These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24985209)

  • 1. Responsive and "smart" antibacterial surfaces: common approaches and new developments (Review).
    Cavallaro A; Taheri S; Vasilev K
    Biointerphases; 2014 Jun; 9(2):029005. PubMed ID: 24985209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibacterial surfaces: the quest for a new generation of biomaterials.
    Hasan J; Crawford RJ; Ivanova EP
    Trends Biotechnol; 2013 May; 31(5):295-304. PubMed ID: 23434154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-function antibacterial surfaces for biomedical applications.
    Yu Q; Wu Z; Chen H
    Acta Biomater; 2015 Apr; 16():1-13. PubMed ID: 25637065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way.
    Wei T; Yu Q; Chen H
    Adv Healthc Mater; 2019 Feb; 8(3):e1801381. PubMed ID: 30609261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Host-Guest Interaction-Mediated Photo/Temperature Dual-Controlled Antibacterial Surfaces.
    Ni Y; Zhang D; Wang Y; He X; He J; Wu H; Yuan J; Sha D; Che L; Tan J; Yang J
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14543-14551. PubMed ID: 33733728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial adhesion of borneol-based polymer via surface chiral stereochemistry.
    Luo L; Li G; Luan D; Yuan Q; Wei Y; Wang X
    ACS Appl Mater Interfaces; 2014; 6(21):19371-7. PubMed ID: 25331199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotechnology tools for antibacterial materials.
    Rizzello L; Cingolani R; Pompa PP
    Nanomedicine (Lond); 2013 May; 8(5):807-21. PubMed ID: 23656266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering biomaterials surfaces to modulate the host response.
    Yu K; Mei Y; Hadjesfandiari N; Kizhakkedathu JN
    Colloids Surf B Biointerfaces; 2014 Dec; 124():69-79. PubMed ID: 25193153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomaterials surfaces capable of resisting fungal attachment and biofilm formation.
    Coad BR; Kidd SE; Ellis DH; Griesser HJ
    Biotechnol Adv; 2014; 32(2):296-307. PubMed ID: 24211473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of the biomaterials technologies for infection-resistant surfaces.
    Campoccia D; Montanaro L; Arciola CR
    Biomaterials; 2013 Nov; 34(34):8533-54. PubMed ID: 23953781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Editorial: Advanced Antimicrobial Materials and Interfaces.
    Wei J; Ding J
    Curr Pharm Des; 2018; 24(8):841-842. PubMed ID: 29512443
    [No Abstract]   [Full Text] [Related]  

  • 12. Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities.
    Wei T; Tang Z; Yu Q; Chen H
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37511-37523. PubMed ID: 28992417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layer-by-layer assemblies for antibacterial applications.
    Zhu X; Jun Loh X
    Biomater Sci; 2015 Dec; 3(12):1505-18. PubMed ID: 26415703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-Based Antibacterial Substrates for Biomedical Applications.
    Paladini F; Pollini M; Sannino A; Ambrosio L
    Biomacromolecules; 2015 Jul; 16(7):1873-85. PubMed ID: 26082968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switchable Dual-Function and Bioresponsive Materials to Control Bacterial Infections.
    Ghasemlou M; Daver F; Ivanova EP; Rhim JW; Adhikari B
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):22897-22914. PubMed ID: 31180196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smart molecularly imprinted polymers: recent developments and applications.
    Ge Y; Butler B; Mirza F; Habib-Ullah S; Fei D
    Macromol Rapid Commun; 2013 Jun; 34(11):903-15. PubMed ID: 23625770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibacterial polymeric nanostructures for biomedical applications.
    Chen J; Wang F; Liu Q; Du J
    Chem Commun (Camb); 2014 Dec; 50(93):14482-93. PubMed ID: 25110921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonleaching Bacteria-Responsive Antibacterial Surface Based on a Unique Hierarchical Architecture.
    Yan S; Shi H; Song L; Wang X; Liu L; Luan S; Yang Y; Yin J
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24471-81. PubMed ID: 27579893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan-heparin polyelectrolyte multilayers on cortical bone: periosteum-mimetic, cytophilic, antibacterial coatings.
    Almodóvar J; Mower J; Banerjee A; Sarkar AK; Ehrhart NP; Kipper MJ
    Biotechnol Bioeng; 2013 Feb; 110(2):609-18. PubMed ID: 22903591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibacterial surfaces developed from bio-inspired approaches.
    Glinel K; Thebault P; Humblot V; Pradier CM; Jouenne T
    Acta Biomater; 2012 May; 8(5):1670-84. PubMed ID: 22289644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.