These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24985213)

  • 1. Laser surface structuring of AZ31 Mg alloy for controlled wettability.
    Gökhan Demir A; Furlan V; Lecis N; Previtali B
    Biointerphases; 2014 Jun; 9(2):029009. PubMed ID: 24985213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser irradiation of Mg-Al-Zn alloy: Reduced electrochemical kinetics and enhanced performance in simulated body fluid.
    Florian DC; Melia MA; Steuer FW; Briglia BF; Purzycki MK; Scully JR; Fitz-Gerald JM
    Biointerphases; 2017 May; 12(2):021003. PubMed ID: 28494593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser surface modification of AZ31B Mg alloy for bio-wettability.
    Ho YH; Vora HD; Dahotre NB
    J Biomater Appl; 2015 Feb; 29(7):915-28. PubMed ID: 25201909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of biocompatibility in a laser surface treated Mg-AZ31B alloy.
    Lu JZ; Joshi SS; Pantawane MV; Ho YH; Wu TC; Dahotre NB
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110028. PubMed ID: 31546463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of surface modification on the in vitro corrosion rate of magnesium alloy AZ31.
    Gray-Munro JE; Seguin C; Strong M
    J Biomed Mater Res A; 2009 Oct; 91(1):221-30. PubMed ID: 18814220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wetting behaviour of laser synthetic surface microtextures on Ti-6Al-4V for bioapplication.
    Dahotre NB; Paital SR; Samant AN; Daniel C
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):1863-89. PubMed ID: 20308107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomedical Ti-Mo alloys with surface machined and modified by laser beam: biomechanical, histological, and histometric analysis in rabbits.
    Oliveira NT; Guastaldi FP; Perrotti V; Hochuli-Vieira E; Guastaldi AC; Piattelli A; Iezzi G
    Clin Implant Dent Relat Res; 2013 Jun; 15(3):427-37. PubMed ID: 21554530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on super-hydrophobic surface of biodegradable magnesium alloys used for vascular stents.
    Wan P; Wu J; Tan L; Zhang B; Yang K
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2885-90. PubMed ID: 23623110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalization of biodegradable magnesium alloy implants with alkylphosphonate self-assembled films.
    Grubač Z; Metikoš-Huković M; Babić R; Rončević IŠ; Petravić M; Peter R
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2152-8. PubMed ID: 23498243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond laser controlled wettability of solid surfaces.
    Yong J; Chen F; Yang Q; Hou X
    Soft Matter; 2015 Dec; 11(46):8897-906. PubMed ID: 26415826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of CW, nanosecond- and femtosecond-pulsed laser microcutting of AZ31 magnesium alloy stents.
    Gökhan Demir A; Previtali B
    Biointerphases; 2014 Jun; 9(2):029004. PubMed ID: 24985208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of shot peening on corrosion properties of biocompatible magnesium alloy AZ31 coated by dicalcium phosphate dihydrate (DCPD).
    Mhaede M; Pastorek F; Hadzima B
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():330-5. PubMed ID: 24863232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31.
    Gray-Munro JE; Strong M
    J Biomed Mater Res A; 2009 Aug; 90(2):339-50. PubMed ID: 18508354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Experimental Investigation of Controlled Changes in Wettability of Laser-Treated Surfaces after Various Post Treatment Methods.
    Primus T; Zeman P; Brajer J; Kožmín P; Syrovátka Š
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33926001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of biomineralization on the degradation of fine grained AZ31 magnesium alloy processed by groove pressing.
    Sunil BR; Kumar AA; Sampath Kumar TS; Chakkingal U
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1607-15. PubMed ID: 23827614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofunctionalized anti-corrosive silane coatings for magnesium alloys.
    Liu X; Yue Z; Romeo T; Weber J; Scheuermann T; Moulton S; Wallace G
    Acta Biomater; 2013 Nov; 9(10):8671-7. PubMed ID: 23313945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corrosion resistance of a composite polymeric coating applied on biodegradable AZ31 magnesium alloy.
    Zomorodian A; Garcia MP; Moura e Silva T; Fernandes JC; Fernandes MH; Montemor MF
    Acta Biomater; 2013 Nov; 9(10):8660-70. PubMed ID: 23454214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of microtextured surface topography on the wetting behavior of eutectic gallium-indium alloys.
    Kramer RK; Boley JW; Stone HA; Weaver JC; Wood RJ
    Langmuir; 2014 Jan; 30(2):533-9. PubMed ID: 24358994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delicate refinement of surface nanotopography by adjusting TiO2 coating chemical composition for enhanced interfacial biocompatibility.
    Zhao X; Wang G; Zheng H; Lu Z; Zhong X; Cheng X; Zreiqat H
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8203-9. PubMed ID: 23957368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review paper: surface modification for bioimplants: the role of laser surface engineering.
    Kurella A; Dahotre NB
    J Biomater Appl; 2005 Jul; 20(1):5-50. PubMed ID: 15972362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.