These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 24985455)
1. Scaling of chaos in strongly nonlinear lattices. Mulansky M Chaos; 2014 Jun; 24(2):024401. PubMed ID: 24985455 [TBL] [Abstract][Full Text] [Related]
2. Scaling properties of energy spreading in nonlinear Hamiltonian two-dimensional lattices. Mulansky M; Pikovsky A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056214. PubMed ID: 23214864 [TBL] [Abstract][Full Text] [Related]
3. Compactons and chaos in strongly nonlinear lattices. Ahnert K; Pikovsky A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026209. PubMed ID: 19391822 [TBL] [Abstract][Full Text] [Related]
4. Improvement and empirical research on chaos control by theory of "chaos + chaos = order". Fulai W Chaos; 2012 Dec; 22(4):043145. PubMed ID: 23278080 [TBL] [Abstract][Full Text] [Related]
5. Chaos and irreversibility in simple model systems. Hoover WG; Posch HA Chaos; 1998 Jun; 8(2):366-373. PubMed ID: 12779740 [TBL] [Abstract][Full Text] [Related]
6. Scaling of energy spreading in strongly nonlinear disordered lattices. Mulansky M; Ahnert K; Pikovsky A Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026205. PubMed ID: 21405894 [TBL] [Abstract][Full Text] [Related]
7. The transition between strong and weak chaos in delay systems: Stochastic modeling approach. Jüngling T; D'Huys O; Kinzel W Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062918. PubMed ID: 26172783 [TBL] [Abstract][Full Text] [Related]
8. Local nature and scaling of chaos in weakly nonlinear disordered chains. Basko DM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036202. PubMed ID: 23030992 [TBL] [Abstract][Full Text] [Related]
9. Chaotic and Arnold stripes in weakly chaotic Hamiltonian systems. Custódio MS; Manchein C; Beims MW Chaos; 2012 Jun; 22(2):026112. PubMed ID: 22757571 [TBL] [Abstract][Full Text] [Related]
11. Scaling properties of weak chaos in nonlinear disordered lattices. Pikovsky A; Fishman S Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):025201. PubMed ID: 21405880 [TBL] [Abstract][Full Text] [Related]
12. Novel techniques to analyze dynamical properties of quantum chaos with peculiar evidence of hybrid systems confinement. Bary G; Ahmed W; Ahmad R; Niazai S; Khan I Sci Rep; 2024 May; 14(1):11041. PubMed ID: 38744905 [TBL] [Abstract][Full Text] [Related]
13. Chaotic wave-packet spreading in two-dimensional disordered nonlinear lattices. Many Manda B; Senyange B; Skokos C Phys Rev E; 2020 Mar; 101(3-1):032206. PubMed ID: 32289935 [TBL] [Abstract][Full Text] [Related]
14. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry]. Pezard L; Nandrino JL Encephale; 2001; 27(3):260-8. PubMed ID: 11488256 [TBL] [Abstract][Full Text] [Related]
15. Geometric and dynamic perspectives on phase-coherent and noncoherent chaos. Zou Y; Donner RV; Kurths J Chaos; 2012 Mar; 22(1):013115. PubMed ID: 22462991 [TBL] [Abstract][Full Text] [Related]
16. Kinetic theory of nonlinear diffusion in a weakly disordered nonlinear Schrödinger chain in the regime of homogeneous chaos. Basko DM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022921. PubMed ID: 25353559 [TBL] [Abstract][Full Text] [Related]
17. Equilibrium regained: from nonequilibrium chaos to statistical mechanics. Egolf DA Science; 2000 Jan; 287(5450):101-4. PubMed ID: 10615038 [TBL] [Abstract][Full Text] [Related]
18. Signatures of chaos in time series generated by many-spin systems at high temperatures. Elsayed TA; Hess B; Fine BV Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022910. PubMed ID: 25215802 [TBL] [Abstract][Full Text] [Related]
19. Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics. Wang G; Lai YC; Grebogi C Sci Rep; 2016 Oct; 6():35381. PubMed ID: 27748418 [TBL] [Abstract][Full Text] [Related]
20. Microscopic chaos from Brownian motion in a one-dimensional anharmonic oscillator chain. Romero-Bastida M; Braun E Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036228. PubMed ID: 11909233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]