These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

588 related articles for article (PubMed ID: 24985609)

  • 21. Legendre-spectral Dyson equation solver with super-exponential convergence.
    Dong X; Zgid D; Gull E; Strand HUR
    J Chem Phys; 2020 Apr; 152(13):134107. PubMed ID: 32268748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Second-order many-body perturbation theory: an eternal frontier.
    Hirata S; He X; Hermes MR; Willow SY
    J Phys Chem A; 2014 Jan; 118(4):655-72. PubMed ID: 24328153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extension of the KLI approximation toward the exact optimized effective potential.
    Iafrate GJ; Krieger JB
    J Chem Phys; 2013 Mar; 138(9):094104. PubMed ID: 23485274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulation of inhomogeneous distributions of ultracold atoms in an optical lattice via a massively parallel implementation of nonequilibrium strong-coupling perturbation theory.
    Dirks A; Mikelsons K; Krishnamurthy HR; Freericks JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023306. PubMed ID: 25353604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Justifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory.
    Ismail-Beigi S
    J Phys Condens Matter; 2017 Sep; 29(38):385501. PubMed ID: 28593935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time-Dependent Second-Order Green's Function Theory for Neutral Excitations.
    Dou W; Lee J; Zhu J; Mejía L; Reichman DR; Baer R; Rabani E
    J Chem Theory Comput; 2022 Sep; 18(9):5221-5232. PubMed ID: 36040050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The extension of the fragment molecular orbital method with the many-particle Green's function.
    Yasuda K; Yamaki D
    J Chem Phys; 2006 Oct; 125(15):154101. PubMed ID: 17059233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monte Carlo explicitly correlated many-body Green's function theory.
    Johnson CM; Doran AE; Ten-No SL; Hirata S
    J Chem Phys; 2018 Nov; 149(17):174112. PubMed ID: 30409017
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient Temperature-Dependent Green's Functions Methods for Realistic Systems: Compact Grids for Orthogonal Polynomial Transforms.
    Kananenka AA; Phillips JJ; Zgid D
    J Chem Theory Comput; 2016 Feb; 12(2):564-71. PubMed ID: 26735685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Many-body Green's function theory for electron-phonon interactions: The Kadanoff-Baym approach to spectral properties of the Holstein dimer.
    Säkkinen N; Peng Y; Appel H; van Leeuwen R
    J Chem Phys; 2015 Dec; 143(23):234102. PubMed ID: 26696041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iterative subspace algorithms for finite-temperature solution of Dyson equation.
    Pokhilko P; Yeh CN; Zgid D
    J Chem Phys; 2022 Mar; 156(9):094101. PubMed ID: 35259903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An efficient molecular orbital approach for self-consistent calculations of molecular junctions.
    Nakamura H; Yamashita K
    J Chem Phys; 2006 Nov; 125(19):194106. PubMed ID: 17129088
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Equation-of-Motion Coupled-Cluster Cumulant Green's Function for Excited States and X-Ray Spectra.
    Vila FD; Kas JJ; Rehr JJ; Kowalski K; Peng B
    Front Chem; 2021; 9():734945. PubMed ID: 34631660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Benchmarking the performance of density functional theory based Green's function formalism utilizing different self-energy models in calculating electronic transmission through molecular systems.
    Prociuk A; Van Kuiken B; Dunietz BD
    J Chem Phys; 2006 Nov; 125(20):204717. PubMed ID: 17144733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Green's function Monte Carlo method with exact imaginary-time propagation.
    Schmidt KE; Niyaz P; Vaught A; Lee MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016707. PubMed ID: 15697764
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wave Function Perspective and Efficient Truncation of Renormalized Second-Order Perturbation Theory.
    Backhouse OJ; Nusspickel M; Booth GH
    J Chem Theory Comput; 2020 Feb; 16(2):1090-1104. PubMed ID: 31951406
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical Potentials and the One-Electron Hamiltonian of the Second-Order Perturbation Theory from the Functional Derivative Approach.
    Li J; Yang W
    J Phys Chem A; 2024 Jun; 128(24):4876-4885. PubMed ID: 38842399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced many-body effects in 2- and 1-dimensional ZnO structures: a Green's function perturbation theory study.
    Wei W; Dai Y; Huang B; Jacob T
    J Chem Phys; 2013 Oct; 139(14):144703. PubMed ID: 24116637
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Linked-cluster expansion for the Green's function of the infinite-U Hubbard model.
    Khatami E; Perepelitsky E; Rigol M; Shastry BS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063301. PubMed ID: 25019906
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Many-body Green's function theory for electron-phonon interactions: Ground state properties of the Holstein dimer.
    Säkkinen N; Peng Y; Appel H; van Leeuwen R
    J Chem Phys; 2015 Dec; 143(23):234101. PubMed ID: 26696040
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.