These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24985616)

  • 1. A method of orbital analysis for large-scale first-principles simulations.
    Ohwaki T; Otani M; Ozaki T
    J Chem Phys; 2014 Jun; 140(24):244105. PubMed ID: 24985616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SIESTA-PEXSI: massively parallel method for efficient and accurate ab initio materials simulation without matrix diagonalization.
    Lin L; García A; Huhs G; Yang C
    J Phys Condens Matter; 2014 Jul; 26(30):305503. PubMed ID: 25007803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Static and dynamic second hyperpolarizability calculated by time-dependent density functional cubic response theory with local contribution and natural bond orbital analysis.
    Ye A; Patchkovskii S; Autschbach J
    J Chem Phys; 2007 Aug; 127(7):074104. PubMed ID: 17718603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural bond orbital analysis in the ONETEP code: applications to large protein systems.
    Lee LP; Cole DJ; Payne MC; Skylaris CK
    J Comput Chem; 2013 Mar; 34(6):429-44. PubMed ID: 23065758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Calculations with Multisite Local Orbitals in a Large-Scale DFT Code CONQUEST.
    Nakata A; Bowler DR; Miyazaki T
    J Chem Theory Comput; 2014 Nov; 10(11):4813-22. PubMed ID: 26584368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of density functional theory orbitals in the GVVPT2 variant of second-order multistate multireference perturbation theory.
    Hoffmann MR; Helgaker T
    J Phys Chem A; 2015 Mar; 119(9):1548-53. PubMed ID: 25229307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantum chemical calculation on Fe(CO)5 revealing the operation of the Dewar-Chatt-Duncanson model.
    Bachler V
    J Comput Chem; 2012 Sep; 33(24):1936-47. PubMed ID: 22674406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orbital signatures as a descriptor of regioselectivity and chemical reactivity: the role of the frontier orbitals on 1,3-dipolar cycloadditions.
    La Porta FA; Ramalho TC; Santiago RT; Rocha MV; da Cunha EF
    J Phys Chem A; 2011 Feb; 115(5):824-33. PubMed ID: 21222451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale first-principles molecular dynamics for electrochemical systems with O(N) methods.
    Ohwaki T; Otani M; Ikeshoji T; Ozaki T
    J Chem Phys; 2012 Apr; 136(13):134101. PubMed ID: 22482534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient preconditioning of the electronic structure problem in large scale ab initio molecular dynamics simulations.
    Schiffmann F; VandeVondele J
    J Chem Phys; 2015 Jun; 142(24):244117. PubMed ID: 26133420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. II. An efficient algorithm for matrix elements and analytical energy gradients in VBSCF method.
    Chen Z; Chen X; Wu W
    J Chem Phys; 2013 Apr; 138(16):164120. PubMed ID: 23635124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel, linear-scaling building-block and embedding method based on localized orbitals and orbital-specific basis sets.
    Seijo L; Barandiarán Z
    J Chem Phys; 2004 Oct; 121(14):6698-709. PubMed ID: 15473725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constrained-Orbital Density Functional Theory. Computational Method and Applications to Surface Chemical Processes.
    Plaisance CP; van Santen RA; Reuter K
    J Chem Theory Comput; 2017 Aug; 13(8):3561-3574. PubMed ID: 28657733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the maximum accuracy of the pseudopotential density functional method with localized atomic orbitals versus plane-wave basis sets.
    Gusso M
    J Chem Phys; 2008 Jan; 128(4):044102. PubMed ID: 18247925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance and accuracy of recursive subspace bisection for hybrid DFT calculations in inhomogeneous systems.
    Dawson W; Gygi F
    J Chem Theory Comput; 2015 Oct; 11(10):4655-63. PubMed ID: 26574256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A variational method for density functional theory calculations on metallic systems with thousands of atoms.
    Ruiz-Serrano Á; Skylaris CK
    J Chem Phys; 2013 Aug; 139(5):054107. PubMed ID: 23927243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion.
    Lin L; Chen M; Yang C; He L
    J Phys Condens Matter; 2013 Jul; 25(29):295501. PubMed ID: 23803312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing paradigms of chemical bonding: adaptive natural density partitioning.
    Zubarev DY; Boldyrev AI
    Phys Chem Chem Phys; 2008 Sep; 10(34):5207-17. PubMed ID: 18728862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orbitals from local RDMFT: Are they Kohn-Sham or natural orbitals?
    Theophilou I; Lathiotakis NN; Gidopoulos NI; Rubio A; Helbig N
    J Chem Phys; 2015 Aug; 143(5):054106. PubMed ID: 26254641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.