These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24985647)

  • 1. Rotational spectrum of SO3 and theoretical evidence for the formation of sixfold rotational energy-level clusters in its vibrational ground state.
    Underwood DS; Yurchenko SN; Tennyson J; Jensen P
    J Chem Phys; 2014 Jun; 140(24):244316. PubMed ID: 24985647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ab initio variationally computed room-temperature line list for (32)S(16)O3.
    Underwood DS; Tennyson J; Yurchenko SN
    Phys Chem Chem Phys; 2013 Jul; 15(25):10118-25. PubMed ID: 23579443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the FASSST rotational spectrum of NCNCS in view of quantum monodromy.
    Winnewisser BP; Winnewisser M; Medvedev IR; De Lucia FC; Ross SC; Koput J
    Phys Chem Chem Phys; 2010 Aug; 12(29):8158-89. PubMed ID: 20372691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical rotation-vibration spectrum of thioformaldehyde.
    Yachmenev A; Polyak I; Thiel W
    J Chem Phys; 2013 Nov; 139(20):204308. PubMed ID: 24289355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new "spectroscopic" potential energy surface for formaldehyde in its ground electronic state.
    Yachmenev A; Yurchenko SN; Jensen P; Thiel W
    J Chem Phys; 2011 Jun; 134(24):244307. PubMed ID: 21721630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio calculation of the rotational spectrum of methane vibrational ground state.
    Cassam-Chenaï P; Liévin J
    J Chem Phys; 2012 May; 136(17):174309. PubMed ID: 22583232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate spectroscopic models for methane polyads derived from a potential energy surface using high-order contact transformations.
    Tyuterev V; Tashkun S; Rey M; Kochanov R; Nikitin A; Delahaye T
    J Phys Chem A; 2013 Dec; 117(50):13779-805. PubMed ID: 24131356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variationally Computed IR Line List for the Methyl Radical CH
    Adam AY; Yachmenev A; Yurchenko SN; Jensen P
    J Phys Chem A; 2019 Jun; 123(22):4755-4763. PubMed ID: 31050423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical evidence for the formation of rotational energy level clusters in the vibrational ground state of PH3.
    Yurchenko SN; Thiel W; Patchkovskii S; Jensen P
    Phys Chem Chem Phys; 2005 Feb; 7(4):573-82. PubMed ID: 19787872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid variational-perturbation calculation of the ro-vibrational spectrum of nitric acid.
    Pavlyuchko AI; Yurchenko SN; Tennyson J
    J Chem Phys; 2015 Mar; 142(9):094309. PubMed ID: 25747083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dipole moment and rovibrational intensities in the electronic ground state of NH3: bridging the gap between ab initio theory and spectroscopic experiment.
    Yurchenko SN; Carvajal M; Lin H; Zheng J; Thiel W; Jensen P
    J Chem Phys; 2005 Mar; 122(10):104317. PubMed ID: 15836325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-energy rotational inelastic collisions of H(+) + CO system.
    Kumar TJ; Kumar S
    J Chem Phys; 2012 Jan; 136(4):044317. PubMed ID: 22299881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A variationally computed T = 300 K line list for NH3.
    Yurchenko SN; Barber RJ; Yachmenev A; Thiel W; Jensen P; Tennyson J
    J Phys Chem A; 2009 Oct; 113(43):11845-55. PubMed ID: 19634882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rotational spectrum and dynamical structure of LiOH and LiOD: a combined laboratory and ab initio study.
    Higgins KJ; Freund SM; Klemperer W; Apponi AJ; Ziurys LM
    J Chem Phys; 2004 Dec; 121(23):11715-30. PubMed ID: 15634137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational and rotational structure and excited-state dynamics of pyrene.
    Baba M; Saitoh M; Kowaka Y; Taguma K; Yoshida K; Semba Y; Kasahara S; Yamanaka T; Ohshima Y; Hsu YC; Lin SH
    J Chem Phys; 2009 Dec; 131(22):224318. PubMed ID: 20001047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory of the photodissociation of ozone in the Hartley continuum: potential energy surfaces, conical intersections, and photodissociation dynamics.
    Baloïtcha E; Balint-Kurti GG
    J Chem Phys; 2005 Jul; 123(1):014306. PubMed ID: 16035834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio prediction of the potential energy surface and vibrational-rotational energy levels of dialuminum monoxide, Al2O.
    Koput J; Gertych A
    J Chem Phys; 2004 Jul; 121(1):130-5. PubMed ID: 15260529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A global potential energy surface and dipole moment surface for silane.
    Owens A; Yurchenko SN; Yachmenev A; Thiel W
    J Chem Phys; 2015 Dec; 143(24):244317. PubMed ID: 26723681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 13C(16)O(2): Global Treatment of Vibrational-Rotational Spectra and First Observation of the 2nu(1) + 5nu(3) and nu(1) + 2nu(2) + 5nu(3) Absorption Bands.
    Tashkun SA; Perevalov VI; Teffo J; Lecoutre M; Huet TR; Campargue A; Bailly D; Esplin MP
    J Mol Spectrosc; 2000 Apr; 200(2):162-176. PubMed ID: 10708529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Level, First-Principles, Full-Dimensional Quantum Calculation of the Ro-vibrational Spectrum of the Simplest Criegee Intermediate (CH2OO).
    Li J; Carter S; Bowman JM; Dawes R; Xie D; Guo H
    J Phys Chem Lett; 2014 Jul; 5(13):2364-9. PubMed ID: 26279560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.