These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. PEGylation improves the receptor-mediated transfection efficiency of peptide-targeted, self-assembling, anionic nanocomplexes. Tagalakis AD; Kenny GD; Bienemann AS; McCarthy D; Munye MM; Taylor H; Wyatt MJ; Lythgoe MF; White EA; Hart SL J Control Release; 2014 Jan; 174():177-87. PubMed ID: 24269968 [TBL] [Abstract][Full Text] [Related]
3. Systemic delivery of BACE1 siRNA through neuron-targeted nanocomplexes for treatment of Alzheimer's disease. Wang P; Zheng X; Guo Q; Yang P; Pang X; Qian K; Lu W; Zhang Q; Jiang X J Control Release; 2018 Jun; 279():220-233. PubMed ID: 29679667 [TBL] [Abstract][Full Text] [Related]
5. Therapeutic targeting of siRNA/anti-cancer drug delivery system for non-melanoma skin cancer. Part I: Development and gene silencing of JAK1siRNA/5-FU loaded liposome nanocomplexes. Aslan M; Ozturk S; Shahbazi R; Bozdemir Ö; Dilara Zeybek N; Vargel İ; Eroğlu İ; Ulubayram K Eur J Pharm Biopharm; 2024 Oct; 203():114432. PubMed ID: 39097115 [TBL] [Abstract][Full Text] [Related]
6. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Gomes-da-Silva LC; Fonseca NA; Moura V; Pedroso de Lima MC; Simões S; Moreira JN Acc Chem Res; 2012 Jul; 45(7):1163-71. PubMed ID: 22568781 [TBL] [Abstract][Full Text] [Related]
7. A method for concentrating lipid peptide DNA and siRNA nanocomplexes that retains their structure and transfection efficiency. Tagalakis AD; Castellaro S; Zhou H; Bienemann A; Munye MM; McCarthy D; White EA; Hart SL Int J Nanomedicine; 2015; 10():2673-83. PubMed ID: 25878500 [TBL] [Abstract][Full Text] [Related]
8. Multifunctional receptor-targeted nanocomplexes for the delivery of therapeutic nucleic acids to the brain. Kenny GD; Bienemann AS; Tagalakis AD; Pugh JA; Welser K; Campbell F; Tabor AB; Hailes HC; Gill SS; Lythgoe MF; McLeod CW; White EA; Hart SL Biomaterials; 2013 Dec; 34(36):9190-200. PubMed ID: 23948162 [TBL] [Abstract][Full Text] [Related]
9. Anionic polymers for decreased toxicity and enhanced in vivo delivery of siRNA complexed with cationic liposomes. Schlegel A; Largeau C; Bigey P; Bessodes M; Lebozec K; Scherman D; Escriou V J Control Release; 2011 Jun; 152(3):393-401. PubMed ID: 21497175 [TBL] [Abstract][Full Text] [Related]
10. Effect of surface properties on liposomal siRNA delivery. Xia Y; Tian J; Chen X Biomaterials; 2016 Feb; 79():56-68. PubMed ID: 26695117 [TBL] [Abstract][Full Text] [Related]
11. Surface coating of siRNA-peptidomimetic nano-self-assemblies with anionic lipid bilayers: enhanced gene silencing and reduced adverse effects in vitro. Zeng X; de Groot AM; Sijts AJ; Broere F; Oude Blenke E; Colombo S; van Eden W; Franzyk H; Nielsen HM; Foged C Nanoscale; 2015 Dec; 7(46):19687-98. PubMed ID: 26553270 [TBL] [Abstract][Full Text] [Related]
12. Comparison of Modular PEG Incorporation Strategies for Stabilization of Peptide-siRNA Nanocomplexes. Lo JH; Kwon EJ; Zhang AQ; Singhal P; Bhatia SN Bioconjug Chem; 2016 Oct; 27(10):2323-2331. PubMed ID: 27583545 [TBL] [Abstract][Full Text] [Related]
13. Multifunctional magnetite nanoparticles to enable delivery of siRNA for the potential treatment of Alzheimer's. Lopez-Barbosa N; Garcia JG; Cifuentes J; Castro LM; Vargas F; Ostos C; Cardona-Gomez GP; Hernandez AM; Cruz JC Drug Deliv; 2020 Dec; 27(1):864-875. PubMed ID: 32515999 [TBL] [Abstract][Full Text] [Related]
14. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer's therapy. Rassu G; Soddu E; Posadino AM; Pintus G; Sarmento B; Giunchedi P; Gavini E Colloids Surf B Biointerfaces; 2017 Apr; 152():296-301. PubMed ID: 28126681 [TBL] [Abstract][Full Text] [Related]
15. Physicochemical characterization of anionic lipid-based ternary siRNA complexes. Kapoor M; Burgess DJ Biochim Biophys Acta; 2012 Jul; 1818(7):1603-12. PubMed ID: 22465067 [TBL] [Abstract][Full Text] [Related]
16. Peptide and nucleic acid-directed self-assembly of cationic nanovehicles through giant unilamellar vesicle modification: Targetable nanocomplexes for in vivo nucleic acid delivery. Tagalakis AD; Maeshima R; Yu-Wai-Man C; Meng J; Syed F; Wu LP; Aldossary AM; McCarthy D; Moghimi SM; Hart SL Acta Biomater; 2017 Mar; 51():351-362. PubMed ID: 28110069 [TBL] [Abstract][Full Text] [Related]
17. siRNA delivery by a transferrin-associated lipid-based vector: a non-viral strategy to mediate gene silencing. Cardoso AL; Simões S; de Almeida LP; Pelisek J; Culmsee C; Wagner E; Pedroso de Lima MC J Gene Med; 2007 Mar; 9(3):170-83. PubMed ID: 17351968 [TBL] [Abstract][Full Text] [Related]
18. Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis. Yu-Wai-Man C; Tagalakis AD; Manunta MD; Hart SL; Khaw PT Sci Rep; 2016 Feb; 6():21881. PubMed ID: 26905457 [TBL] [Abstract][Full Text] [Related]
19. Efficient and safe delivery of siRNA using anionic lipids: Formulation optimization studies. Kapoor M; Burgess DJ Int J Pharm; 2012 Aug; 432(1-2):80-90. PubMed ID: 22575754 [TBL] [Abstract][Full Text] [Related]
20. Recent advances in nonviral vectors for gene delivery. Guo X; Huang L Acc Chem Res; 2012 Jul; 45(7):971-9. PubMed ID: 21870813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]