These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24986023)

  • 1. Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures.
    Bosman M; Zhang L; Duan H; Tan SF; Nijhuis CA; Qiu CW; Yang JK
    Sci Rep; 2014 Jul; 4():5537. PubMed ID: 24986023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polycrystallinity of Lithographically Fabricated Plasmonic Nanostructures Dominates Their Acoustic Vibrational Damping.
    Yi C; Su MN; Dongare PD; Chakraborty D; Cai YY; Marolf DM; Kress RN; Ostovar B; Tauzin LJ; Wen F; Chang WS; Jones MR; Sader JE; Halas NJ; Link S
    Nano Lett; 2018 Jun; 18(6):3494-3501. PubMed ID: 29715035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observing Plasmon Damping Due to Adhesion Layers in Gold Nanostructures Using Electron Energy Loss Spectroscopy.
    Madsen SJ; Esfandyarpour M; Brongersma ML; Sinclair R
    ACS Photonics; 2017 Feb; 4(2):268-274. PubMed ID: 28944259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon damping quantified with an electron nanoprobe.
    Bosman M; Ye E; Tan SF; Nijhuis CA; Yang JK; Marty R; Mlayah A; Arbouet A; Girard C; Han MY
    Sci Rep; 2013; 3():1312. PubMed ID: 23425921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasmall Designed Plasmon Resonators by Fused Colloidal Nanopatterning.
    Asbahi M; Mahfoud Z; Dolmanan SB; Wu W; Dong Z; Wang F; Saifullah MSM; Tripathy S; Chong KSL; Bosman M
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45207-45213. PubMed ID: 31694369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures.
    Koh AL; Fernández-Domínguez AI; McComb DW; Maier SA; Yang JK
    Nano Lett; 2011 Mar; 11(3):1323-30. PubMed ID: 21344928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-modulated photoluminescence of individual gold nanostructures.
    Hu H; Duan H; Yang JK; Shen ZX
    ACS Nano; 2012 Nov; 6(11):10147-55. PubMed ID: 23072661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations.
    Iberi V; Mirsaleh-Kohan N; Camden JP
    J Phys Chem Lett; 2013 Apr; 4(7):1070-8. PubMed ID: 26282023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Interface Damping of Surface Plasmon Resonances.
    Lee SA; Link S
    Acc Chem Res; 2021 Apr; 54(8):1950-1960. PubMed ID: 33788547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Graphene-Supported Aluminum Plasmonics.
    Elibol K; van Aken PA
    ACS Nano; 2022 Aug; 16(8):11931-11943. PubMed ID: 35904978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires.
    Jones AC; Olmon RL; Skrabalak SE; Wiley BJ; Xia YN; Raschke MB
    Nano Lett; 2009 Jul; 9(7):2553-8. PubMed ID: 19499897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward 10 meV electron energy-loss spectroscopy resolution for plasmonics.
    Bellido EP; Rossouw D; Botton GA
    Microsc Microanal; 2014 Jun; 20(3):767-78. PubMed ID: 24690472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drude relaxation rate in grained gold nanoantennas.
    Chen KP; Drachev VP; Borneman JD; Kildishev AV; Shalaev VM
    Nano Lett; 2010 Mar; 10(3):916-22. PubMed ID: 20128610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometric Dependence of the Line Width of Localized Surface Plasmon Resonances.
    Li Y; Zhao K; Sobhani H; Bao K; Nordlander P
    J Phys Chem Lett; 2013 Apr; 4(8):1352-7. PubMed ID: 26282152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Making waves: Radiation damping in metallic nanostructures.
    Devkota T; Brown BS; Beane G; Yu K; Hartland GV
    J Chem Phys; 2019 Aug; 151(8):080901. PubMed ID: 31470703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures.
    Hobbs RG; Manfrinato VR; Yang Y; Goodman SA; Zhang L; Stach EA; Berggren KK
    Nano Lett; 2016 Jul; 16(7):4149-57. PubMed ID: 27295061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon coupling between complex gold nanostructures and a dielectric substrate.
    Fathi ZR; Menguc MP; Erturk H
    Appl Opt; 2018 Oct; 57(30):8954-8963. PubMed ID: 30461882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering metal adhesion layers that do not deteriorate plasmon resonances.
    Siegfried T; Ekinci Y; Martin OJ; Sigg H
    ACS Nano; 2013 Mar; 7(3):2751-7. PubMed ID: 23432333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative.
    Habteyes TG; Dhuey S; Wood E; Gargas D; Cabrini S; Schuck PJ; Alivisatos AP; Leone SR
    ACS Nano; 2012 Jun; 6(6):5702-9. PubMed ID: 22646820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.