These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 24986036)

  • 1. Molecular characterization of redox mechanisms in allergic asthma.
    Jiang L; Diaz PT; Best TM; Stimpfl JN; He F; Zuo L
    Ann Allergy Asthma Immunol; 2014 Aug; 113(2):137-42. PubMed ID: 24986036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel thiol compound, N-acetylcysteine amide, attenuates allergic airway disease by regulating activation of NF-kappaB and hypoxia-inducible factor-1alpha.
    Lee KS; Kim SR; Park HS; Park SJ; Min KH; Lee KY; Choe YH; Hong SH; Han HJ; Lee YR; Kim JS; Atlas D; Lee YC
    Exp Mol Med; 2007 Dec; 39(6):756-68. PubMed ID: 18160846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress in asthma and COPD: antioxidants as a therapeutic strategy.
    Kirkham P; Rahman I
    Pharmacol Ther; 2006 Aug; 111(2):476-94. PubMed ID: 16458359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms of reactive oxygen species-related pulmonary inflammation and asthma.
    Zuo L; Otenbaker NP; Rose BA; Salisbury KS
    Mol Immunol; 2013 Nov; 56(1-2):57-63. PubMed ID: 23665383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased oxidative stress in the airway and development of allergic inflammation in a mouse model of asthma.
    Park CS; Kim TB; Lee KY; Moon KA; Bae YJ; Jang MK; Cho YS; Moon HB
    Ann Allergy Asthma Immunol; 2009 Sep; 103(3):238-47. PubMed ID: 19788022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress in the pathogenesis of asthma.
    Bowler RP
    Curr Allergy Asthma Rep; 2004 Mar; 4(2):116-22. PubMed ID: 14769260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative airway inflammation leads to systemic and vascular oxidative stress in a murine model of allergic asthma.
    Al-Harbi NO; Nadeem A; Al-Harbi MM; Imam F; Al-Shabanah OA; Ahmad SF; Sayed-Ahmed MM; Bahashwan SA
    Int Immunopharmacol; 2015 May; 26(1):237-45. PubMed ID: 25843257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel dithiol amide CB3 attenuates allergic airway disease through negative regulation of p38 mitogen-activated protein kinase.
    Kim SR; Lee KS; Park SJ; Min KH; Lee MH; Lee KA; Bartov O; Atlas D; Lee YC
    Am J Respir Crit Care Med; 2011 Apr; 183(8):1015-24. PubMed ID: 20413633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases.
    Lee IT; Yang CM
    Biochem Pharmacol; 2012 Sep; 84(5):581-90. PubMed ID: 22587816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
    Calabrese V; Lodi R; Tonon C; D'Agata V; Sapienza M; Scapagnini G; Mangiameli A; Pennisi G; Stella AM; Butterfield DA
    J Neurol Sci; 2005 Jun; 233(1-2):145-62. PubMed ID: 15896810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative and nitrative stress in bronchial asthma.
    Sugiura H; Ichinose M
    Antioxid Redox Signal; 2008 Apr; 10(4):785-97. PubMed ID: 18177234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)?
    Haddad JJ; Harb HL
    Mol Immunol; 2005 May; 42(9):987-1014. PubMed ID: 15829290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox-mediated gene therapies for environmental injury: approaches and concepts.
    Engelhardt JF
    Antioxid Redox Signal; 1999; 1(1):5-27. PubMed ID: 11225732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutathione modulation during sensitization as well as challenge phase regulates airway reactivity and inflammation in mouse model of allergic asthma.
    Nadeem A; Siddiqui N; Alharbi NO; Alharbi MM; Imam F; Sayed-Ahmed MM
    Biochimie; 2014 Aug; 103():61-70. PubMed ID: 24742380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring redox imbalance and inflammation for asthma therapy.
    Barnabas M; Awakan OJ; Rotimi DE; Akanji MA; Adeyemi OS
    Mol Biol Rep; 2023 Sep; 50(9):7851-7865. PubMed ID: 37517067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Current status of redox markers in immunological and inflammatory diseases].
    Tsukahara H
    Rinsho Byori; 2005 Aug; 53(8):759-67. PubMed ID: 16190363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of reactive nitrogen species in allergic asthma.
    Zuo L; Koozechian MS; Chen LL
    Ann Allergy Asthma Immunol; 2014 Jan; 112(1):18-22. PubMed ID: 24331388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms of oxidative stress in asthma.
    Michaeloudes C; Abubakar-Waziri H; Lakhdar R; Raby K; Dixey P; Adcock IM; Mumby S; Bhavsar PK; Chung KF
    Mol Aspects Med; 2022 Jun; 85():101026. PubMed ID: 34625291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.