These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 24986109)

  • 1. Parametric-based brain Magnetic Resonance Elastography using a Rayleigh damping material model.
    Petrov AY; Sellier M; Docherty PD; Chase JG
    Comput Methods Programs Biomed; 2014 Oct; 116(3):328-39. PubMed ID: 24986109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-identifiability of the Rayleigh damping material model in magnetic resonance elastography.
    Petrov AY; Geoffrey Chase J; Sellier M; Docherty PD
    Math Biosci; 2013 Nov; 246(1):191-201. PubMed ID: 24018294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-frequency Rayleigh damped elastography: in silico studies.
    Petrov AY; Docherty PD; Sellier M; Chase JG
    Med Eng Phys; 2015 Jan; 37(1):55-67. PubMed ID: 25475683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance elastography of the brain using multishot spiral readouts with self-navigated motion correction.
    Johnson CL; McGarry MD; Van Houten EE; Weaver JB; Paulsen KD; Sutton BP; Georgiadis JG
    Magn Reson Med; 2013 Aug; 70(2):404-12. PubMed ID: 23001771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing 3-D maps of the local viscoelastic properties using a finite-amplitude modulated radiation force.
    Giannoula A; Cobbold R; Bezerianos A
    Ultrasonics; 2014 Feb; 54(2):563-75. PubMed ID: 24011778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subzone based multi-frequency magnetic resonance elastography using a Rayleigh damped material model.
    Petrov A; Chase G; Sellier M; Latta P; Gruwel M; McGarry M; Van Houten E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():436-9. PubMed ID: 23365922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of off-frequency sampling in magnetic resonance elastography.
    Johnson CL; Chen DD; Olivero WC; Sutton BP; Georgiadis JG
    Magn Reson Imaging; 2012 Feb; 30(2):205-12. PubMed ID: 22055750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative 3D magnetic resonance elastography: Comparison with dynamic mechanical analysis.
    Arunachalam SP; Rossman PJ; Arani A; Lake DS; Glaser KJ; Trzasko JD; Manduca A; McGee KP; Ehman RL; Araoz PA
    Magn Reson Med; 2017 Mar; 77(3):1184-1192. PubMed ID: 27016276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic resonance elastography of the brain: A study of feasibility and reproducibility using an ergonomic pillow-like passive driver.
    Huang X; Chafi H; Matthews KL; Carmichael O; Li T; Miao Q; Wang S; Jia G
    Magn Reson Imaging; 2019 Jun; 59():68-76. PubMed ID: 30858002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous, multidirectional acquisition of displacement fields in magnetic resonance elastography of the in vivo human brain.
    Klatt D; Johnson CL; Magin RL
    J Magn Reson Imaging; 2015 Aug; 42(2):297-304. PubMed ID: 25425147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution mechanical imaging of the human brain by three-dimensional multifrequency magnetic resonance elastography at 7T.
    Braun J; Guo J; Lützkendorf R; Stadler J; Papazoglou S; Hirsch S; Sack I; Bernarding J
    Neuroimage; 2014 Apr; 90():308-14. PubMed ID: 24368262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo mapping of brain elasticity in small animals using shear wave imaging.
    Macé E; Cohen I; Montaldo G; Miles R; Fink M; Tanter M
    IEEE Trans Med Imaging; 2011 Mar; 30(3):550-8. PubMed ID: 20876009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of time reduction methods for magnetic resonance elastography of the brain.
    Murphy MC; Glaser KJ; Manduca A; Felmlee JP; Huston J; Ehman RL
    Magn Reson Imaging; 2010 Dec; 28(10):1514-24. PubMed ID: 20817440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MR elastography of the liver and the spleen using a piezoelectric driver, single-shot wave-field acquisition, and multifrequency dual parameter reconstruction.
    Hirsch S; Guo J; Reiter R; Papazoglou S; Kroencke T; Braun J; Sack I
    Magn Reson Med; 2014 Jan; 71(1):267-77. PubMed ID: 23413115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo wideband multifrequency MR elastography of the human brain and liver.
    Dittmann F; Hirsch S; Tzschätzsch H; Guo J; Braun J; Sack I
    Magn Reson Med; 2016 Oct; 76(4):1116-26. PubMed ID: 26485494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of liver viscoelasticity using multifrequency MR elastography.
    Asbach P; Klatt D; Hamhaber U; Braun J; Somasundaram R; Hamm B; Sack I
    Magn Reson Med; 2008 Aug; 60(2):373-9. PubMed ID: 18666132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of a Rayleigh damping model in elastography.
    McGarry MD; Van Houten EE
    Med Biol Eng Comput; 2008 Aug; 46(8):759-66. PubMed ID: 18521645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasi-static magnetic resonance elastography at 7 T to measure the effect of pathology before and after fixation on tissue biomechanical properties.
    McGrath DM; Foltz WD; Al-Mayah A; Niu CJ; Brock KK
    Magn Reson Med; 2012 Jul; 68(1):152-65. PubMed ID: 22213551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo waveguide elastography of white matter tracts in the human brain.
    Romano A; Scheel M; Hirsch S; Braun J; Sack I
    Magn Reson Med; 2012 Nov; 68(5):1410-22. PubMed ID: 22252792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesh adaptation for improving elasticity reconstruction using the FEM inverse problem.
    Goksel O; Eskandari H; Salcudean SE
    IEEE Trans Med Imaging; 2013 Feb; 32(2):408-18. PubMed ID: 23192522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.