These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 24986190)

  • 1. Length scale of Leidenfrost ratchet switches droplet directionality.
    Agapov RL; Boreyko JB; Briggs DP; Srijanto BR; Retterer ST; Collier CP; Lavrik NV
    Nanoscale; 2014 Aug; 6(15):9293-9. PubMed ID: 24986190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric wettability of nanostructures directs leidenfrost droplets.
    Agapov RL; Boreyko JB; Briggs DP; Srijanto BR; Retterer ST; Collier CP; Lavrik NV
    ACS Nano; 2014 Jan; 8(1):860-7. PubMed ID: 24298880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Different Fluids on Rectified Motion of Leidenfrost Droplets on Micro/Sub-Micron Ratchets.
    Ok JT; Choi J; Brown E; Park S
    Microelectron Eng; 2016 Jun; 158():130-134. PubMed ID: 27721527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces.
    Li Q; Kang QJ; Francois MM; Hu AJ
    Soft Matter; 2016 Jan; 12(1):302-12. PubMed ID: 26467921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-step process for dual-scale ratchets with enhanced mobility of Leidenfrost droplets.
    Liu C; Sun K; Lu C; Su J; Han L; Wang Z; Liu Y
    J Colloid Interface Sci; 2020 Jun; 569():229-234. PubMed ID: 32113020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rectification of Mobile Leidenfrost Droplets by Planar Ratchets.
    Li J; Zhou X; Zhang Y; Hao C; Zhao F; Li M; Tang H; Ye W; Wang Z
    Small; 2020 Mar; 16(9):e1901751. PubMed ID: 31231945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ratchet composite thin film for low-temperature self-propelled Leidenfrost droplet.
    Feng R; Zhao W; Wu X; Xue Q
    J Colloid Interface Sci; 2012 Feb; 367(1):450-4. PubMed ID: 22137167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamics of Leidenfrost droplets in one-component fluids.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043013. PubMed ID: 23679519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced droplet control by transition boiling.
    Grounds A; Still R; Takashina K
    Sci Rep; 2012; 2():720. PubMed ID: 23056912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of Continuous Transport of the Droplet by the Contact-Boiling Regime.
    Wang S; Zhao X; Wu X; Zhang Q; Teng Y; Ahuja R; Zhang Y
    Langmuir; 2021 Jan; 37(1):553-560. PubMed ID: 33393313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Leidenfrost Effect: Relevant Time and Length Scales.
    Shirota M; van Limbeek MA; Sun C; Prosperetti A; Lohse D
    Phys Rev Lett; 2016 Feb; 116(6):064501. PubMed ID: 26918994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directional Droplet Propulsion on Gradient Boron Nitride Nanosheet Grid Surface Lubricated with a Vapor Film below the Leidenfrost Temperature.
    Wang Y; Wang R; Zhou Y; Huang Z; Wang J; Jiang L
    ACS Nano; 2018 Dec; 12(12):11995-12003. PubMed ID: 30457835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leidenfrost gas ratchets driven by thermal creep.
    Würger A
    Phys Rev Lett; 2011 Oct; 107(16):164502. PubMed ID: 22107391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of the Leidenfrost effect via low frequency vibrations.
    Ng BT; Hung YM; Tan MK
    Soft Matter; 2015 Jan; 11(4):775-84. PubMed ID: 25493924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leidenfrost droplet trampolining.
    Graeber G; Regulagadda K; Hodel P; Küttel C; Landolf D; Schutzius TM; Poulikakos D
    Nat Commun; 2021 Mar; 12(1):1727. PubMed ID: 33741968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nanoscale Leidenfrost effect.
    Rodrigues J; Desai S
    Nanoscale; 2019 Jul; 11(25):12139-12151. PubMed ID: 31192326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of a soft cargo on a nanoscale ratchet.
    Sekeroglu K; Gurkan UA; Demirci U; Demirel MC
    Appl Phys Lett; 2011 Aug; 99(6):63703-637033. PubMed ID: 21901051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oscillation and self-propulsion of Leidenfrost droplets enclosed in cylindrical cavities.
    Yi P; Thurgood P; Nguyen N; Abdelwahab H; Petersen P; Gilliam C; Ghorbani K; Pirogova E; Tang SY; Khoshmanesh K
    Soft Matter; 2020 Oct; 16(38):8854-8860. PubMed ID: 33026037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroscopically flat and smooth superhydrophobic surfaces: heating induced wetting transitions up to the Leidenfrost temperature.
    Liu G; Craig VS
    Faraday Discuss; 2010; 146():141-51; discussion 195-215, 395-403. PubMed ID: 21043419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of surface topography and wettability on the Leidenfrost effect.
    Zhong L; Guo Z
    Nanoscale; 2017 May; 9(19):6219-6236. PubMed ID: 28470271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.