BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 24986243)

  • 21. Effect of common CYP3A4 and CYP3A5 variants on the pharmacokinetics of the cytochrome P450 3A phenotyping probe midazolam in cancer patients.
    Lepper ER; Baker SD; Permenter M; Ries N; van Schaik RH; Schenk PW; Price DK; Ahn D; Smith NF; Cusatis G; Ingersoll RG; Bates SE; Mathijssen RH; Verweij J; Figg WD; Sparreboom A
    Clin Cancer Res; 2005 Oct; 11(20):7398-404. PubMed ID: 16243813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pharmacogenetic analysis of SNPs in genes involved in the pharmacokinetics and response to lopinavir/ritonavir therapy.
    López Aspiroz E; Cabrera Figueroa SE; Porras Hurtado GL; Cruz Guerrero R; Domínguez-Gil Hurlé A; Carracedo A;
    Curr Drug Metab; 2013 Sep; 14(7):729-37. PubMed ID: 24001122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Factors influencing midazolam hydroxylation activity in human liver microsomes.
    He P; Court MH; Greenblatt DJ; von Moltke LL
    Drug Metab Dispos; 2006 Jul; 34(7):1198-207. PubMed ID: 16638818
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic diversity of CYP3A4 and CYP3A5 polymorphisms in North African populations from Morocco and Tunisia.
    Novillo A; Romero-Lorca A; Gaibar M; Bahri R; Harich N; Sánchez-Cuenca D; Esteban E; Fernández-Santander A
    Int J Biol Markers; 2015 Feb; 30(1):e148-51. PubMed ID: 25385241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pharmacogenomics as molecular autopsy for forensic toxicology: genotyping cytochrome P450 3A4*1B and 3A5*3 for 25 fentanyl cases.
    Jin M; Gock SB; Jannetto PJ; Jentzen JM; Wong SH
    J Anal Toxicol; 2005 Oct; 29(7):590-8. PubMed ID: 16419387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The association among cytochrome P450 3A, progesterone receptor polymorphisms, plasma 17-alpha hydroxyprogesterone caproate concentrations, and spontaneous preterm birth.
    Bustos ML; Caritis SN; Jablonski KA; Reddy UM; Sorokin Y; Manuck T; Varner MW; Wapner RJ; Iams JD; Carpenter MW; Peaceman AM; Mercer BM; Sciscione A; Rouse DJ; Ramin SM;
    Am J Obstet Gynecol; 2017 Sep; 217(3):369.e1-369.e9. PubMed ID: 28522317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Association of CYP3A4, CYP3A5 polymorphisms with lung cancer risk in Bangladeshi population.
    Islam MS; Mostofa AG; Ahmed MU; Bin Sayeed MS; Hassan MR; Hasnat A
    Tumour Biol; 2014 Feb; 35(2):1671-8. PubMed ID: 24085358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiplex genotyping of CYP3A4, CYP3A5, CYP2C9 and CYP2C19 SNPs using MALDI-TOF mass spectrometry.
    Falzoi M; Mossa A; Congeddu E; Saba L; Pani L
    Pharmacogenomics; 2010 Apr; 11(4):559-71. PubMed ID: 20350138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pharmacogenetics of toxicity, plasma trough concentration and treatment outcome with nevirapine-containing regimen in anti-retroviral-naïve HIV-infected adults: an exploratory study of the TRIANON ANRS 081 trial.
    Gozalo C; Gérard L; Loiseau P; Morand-Joubert L; Peytavin G; Molina JM; Dellamonica P; Becquemont L; Aboulker JP; Launay O; Verstuyft C;
    Basic Clin Pharmacol Toxicol; 2011 Dec; 109(6):513-20. PubMed ID: 21824325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pharmacokinetics and 48-week safety and efficacy of generic lopinavir/ritonavir in Thai HIV-infected patients.
    Ramautarsing RA; van der Lugt J; Gorowara M; Sophonphan J; Ananworanich J; Lange JM; Burger DM; Phanuphak P; Ruxthungtham K; Avihingsanon A
    Antivir Ther; 2013; 18(2):249-52. PubMed ID: 22908131
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tacrolimus concentrations in relation to CYP3A and ABCB1 polymorphisms among solid organ transplant recipients in Korea.
    Jun KR; Lee W; Jang MS; Chun S; Song GW; Park KT; Lee SG; Han DJ; Kang C; Cho DY; Kim JQ; Min WK
    Transplantation; 2009 Apr; 87(8):1225-31. PubMed ID: 19384171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Statin regulation of CYP3A4 and CYP3A5 expression.
    Willrich MA; Hirata MH; Hirata RD
    Pharmacogenomics; 2009 Jun; 10(6):1017-24. PubMed ID: 19530969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Personalizing initial calcineurin inhibitor dosing by adjusting to donor CYP3A-status in liver transplant patients.
    Monostory K; Tóth K; Kiss Á; Háfra E; Csikány N; Paulik J; Sárváry E; Kóbori L
    Br J Clin Pharmacol; 2015 Dec; 80(6):1429-37. PubMed ID: 26271661
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Population pharmacokinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the MDR-1, CYP3A4, and CYP3A5 genes.
    Hesselink DA; van Gelder T; van Schaik RH; Balk AH; van der Heiden IP; van Dam T; van der Werf M; Weimar W; Mathot RA
    Clin Pharmacol Ther; 2004 Dec; 76(6):545-56. PubMed ID: 15592326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pharmacogenetics-based population pharmacokinetic analysis of etravirine in HIV-1 infected individuals.
    Lubomirov R; Arab-Alameddine M; Rotger M; Fayet-Mello A; Martinez R; Guidi M; di Iulio J; Cavassini M; Günthard HF; Furrer H; Marzolini C; Bernasconi E; Calmy A; Buclin T; Decosterd LA; Csajka C; Telenti A;
    Pharmacogenet Genomics; 2013 Jan; 23(1):9-18. PubMed ID: 23111422
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Allele and genotype frequencies of the polymorphic cytochrome P450 genes (CYP1A1, CYP3A4, CYP3A5, CYP2C9 and CYP2C19) in the Jordanian population.
    Yousef AM; Bulatova NR; Newman W; Hakooz N; Ismail S; Qusa H; Zahran F; Anwar Ababneh N; Hasan F; Zaloom I; Khayat G; Al-Zmili R; Naffa R; Al-Diab O
    Mol Biol Rep; 2012 Oct; 39(10):9423-33. PubMed ID: 22722998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Influence of CYP3A4/5 polymorphisms in the pharmacokinetics of levonorgestrel: a pilot study].
    Moreno I; Quiñones L; Catalán J; Miranda C; Roco Á; Sasso J; Tamayo E; Cáceres D; Tchernitchin AN; Gaete L; Saavedra I
    Biomedica; 2012; 32(4):570-7. PubMed ID: 23715232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The combination of CYP3A4*22 and CYP3A5*3 single-nucleotide polymorphisms determines tacrolimus dose requirement after kidney transplantation.
    Lloberas N; Elens L; Llaudó I; Padullés A; van Gelder T; Hesselink DA; Colom H; Andreu F; Torras J; Bestard O; Cruzado JM; Gil-Vernet S; van Schaik R; Grinyó JM
    Pharmacogenet Genomics; 2017 Sep; 27(9):313-322. PubMed ID: 28704257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Association Between CYP3A4 and CYP3A5 Genotypes and Cyclosporine's Blood Levels and Doses among Jordanian Kidney Transplanted Patients.
    El-Shair S; Al Shhab M; Zayed K; Alsmady M; Zihlif M
    Curr Drug Metab; 2019; 20(8):682-694. PubMed ID: 31385766
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frequencies and roles of CYP3A5, CYP3A4 and ABCB1 single nucleotide polymorphisms in Italian teenagers after kidney transplantation.
    Turolo S; Tirelli AS; Ferraresso M; Ghio L; Belingheri M; Groppali E; Torresani E; Edefonti A
    Pharmacol Rep; 2010; 62(6):1159-69. PubMed ID: 21273673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.