These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24986260)

  • 1. Molecular-level insights into the reactivity of siloxane-based electrolytes at a lithium-metal anode.
    Assary RS; Lu J; Luo X; Zhang X; Ren Y; Wu H; Albishri HM; El-Hady DA; Al-Bogami AS; Curtiss LA; Amine K
    Chemphyschem; 2014 Jul; 15(10):2077-83. PubMed ID: 24986260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of oxygen crossover on the anode of a Li-O(2) battery using an ether-based solvent: insights from experimental and computational studies.
    Assary RS; Lu J; Du P; Luo X; Zhang X; Ren Y; Curtiss LA; Amine K
    ChemSusChem; 2013 Jan; 6(1):51-5. PubMed ID: 23208891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li-O2 batteries.
    Du P; Lu J; Lau KC; Luo X; Bareño J; Zhang X; Ren Y; Zhang Z; Curtiss LA; Sun YK; Amine K
    Phys Chem Chem Phys; 2013 Apr; 15(15):5572-81. PubMed ID: 23463031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Concentrated Li[(FSO
    Fang Z; Ma Q; Liu P; Ma J; Hu YS; Zhou Z; Li H; Huang X; Chen L
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4282-4289. PubMed ID: 27257855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crossover Effects in Lithium-Metal Batteries with a Localized High Concentration Electrolyte and High-Nickel Cathodes.
    Langdon J; Manthiram A
    Adv Mater; 2022 Oct; 34(41):e2205188. PubMed ID: 35985644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion-Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode.
    Chen X; Shen X; Li B; Peng HJ; Cheng XB; Li BQ; Zhang XQ; Huang JQ; Zhang Q
    Angew Chem Int Ed Engl; 2018 Jan; 57(3):734-737. PubMed ID: 29178154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode.
    Camacho-Forero LE; Balbuena PB
    Phys Chem Chem Phys; 2017 Nov; 19(45):30861-30873. PubMed ID: 29135003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte.
    Walker W; Giordani V; Uddin J; Bryantsev VS; Chase GV; Addison D
    J Am Chem Soc; 2013 Feb; 135(6):2076-9. PubMed ID: 23360567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-(2,2,2-Trifluoroethoxy)propionitrile-based electrolytes for high energy density lithium metal batteries.
    Zhou X; Kozdra M; Ran Q; Deng K; Zhou H; Brandell D; Wang J
    Nanoscale; 2022 Dec; 14(46):17237-17246. PubMed ID: 36377706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Li2S Film Formation on Lithium Anode Surface of Li-S batteries.
    Liu Z; Bertolini S; Balbuena PB; Mukherjee PP
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4700-8. PubMed ID: 26836249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition.
    Kozen AC; Lin CF; Pearse AJ; Schroeder MA; Han X; Hu L; Lee SB; Rubloff GW; Noked M
    ACS Nano; 2015 Jun; 9(6):5884-92. PubMed ID: 25970127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Origin of the Reduced Reductive Stability of Ion-Solvent Complexes on Alkali and Alkaline Earth Metal Anodes.
    Chen X; Li HR; Shen X; Zhang Q
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16643-16647. PubMed ID: 30334312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode.
    Bieker G; Winter M; Bieker P
    Phys Chem Chem Phys; 2015 Apr; 17(14):8670-9. PubMed ID: 25735488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interconnected hollow carbon nanospheres for stable lithium metal anodes.
    Zheng G; Lee SW; Liang Z; Lee HW; Yan K; Yao H; Wang H; Li W; Chu S; Cui Y
    Nat Nanotechnol; 2014 Aug; 9(8):618-23. PubMed ID: 25064396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent Molecule Cooperation Enhancing Lithium Metal Battery Performance at Both Electrodes.
    Zhang Y; Zhong Y; Wu Z; Wang B; Liang S; Wang H
    Angew Chem Int Ed Engl; 2020 May; 59(20):7797-7802. PubMed ID: 32022448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical characterisation of a lithium-ion battery electrolyte based on mixtures of carbonates with a ferrocene-functionalised imidazolium electroactive ionic liquid.
    Forgie JC; El Khakani S; MacNeil DD; Rochefort D
    Phys Chem Chem Phys; 2013 May; 15(20):7713-21. PubMed ID: 23595224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: an in situ ECSTM investigation.
    Wang L; Deng X; Dai PX; Guo YG; Wang D; Wan LJ
    Phys Chem Chem Phys; 2012 May; 14(20):7330-6. PubMed ID: 22526455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron Delocalization Enables Sulfone-based Single-solvent Electrolyte for Lithium Metal Batteries.
    Mominur Rahman M; Hu E
    Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202311051. PubMed ID: 37702373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface characterization of the carbon cathode and the lithium anode of Li-O₂ batteries using LiClO₄ or LiBOB salts.
    Younesi R; Hahlin M; Edström K
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1333-41. PubMed ID: 23336349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure.
    Borodin O; Ren X; Vatamanu J; von Wald Cresce A; Knap J; Xu K
    Acc Chem Res; 2017 Dec; 50(12):2886-2894. PubMed ID: 29164857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.