BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 24986574)

  • 1. Silicone boronates reversibly crosslink using Lewis acid-Lewis base amine complexes.
    Dodge L; Chen Y; Brook MA
    Chemistry; 2014 Jul; 20(30):9349-56. PubMed ID: 24986574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly.
    Bull SD; Davidson MG; van den Elsen JM; Fossey JS; Jenkins AT; Jiang YB; Kubo Y; Marken F; Sakurai K; Zhao J; James TD
    Acc Chem Res; 2013 Feb; 46(2):312-26. PubMed ID: 23148559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible Redox Crosslinking of Thiopropylsilicones.
    Zheng S; Brook MA
    Macromol Rapid Commun; 2021 Mar; 42(5):e2000375. PubMed ID: 32794287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tannic Acid as a Natural Crosslinker for Catalyst-Free Silicone Elastomers From Hydrogen Bonding to Covalent Bonding.
    Kong S; Wang R; Feng S; Wang D
    Front Chem; 2021; 9():778896. PubMed ID: 34733824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Behavior of Boronic Acid-Terminated Silicones.
    Mansuri E; Zepeda-Velazquez L; Schmidt R; Brook MA; DeWolf CE
    Langmuir; 2015 Sep; 31(34):9331-9. PubMed ID: 26263385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of storage duration on the hardness and tensile bond strength of silicone- and acrylic resin-based resilient denture liners to a processed denture base acrylic resin.
    Mese A; Guzel KG
    J Prosthet Dent; 2008 Feb; 99(2):153-9. PubMed ID: 18262017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bonding of maxillofacial silicone elastomers to an acrylic substrate.
    Hatamleh MM; Watts DC
    Dent Mater; 2010 Apr; 26(4):387-95. PubMed ID: 20122716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge transfer via the dative N-B bond and dihydrogen contacts. Experimental and theoretical electron density studies of small Lewis acid-base adducts.
    Mebs S; Grabowsky S; Förster D; Kickbusch R; Hartl M; Daemen LL; Morgenroth W; Luger P; Paulus B; Lentz D
    J Phys Chem A; 2010 Sep; 114(37):10185-96. PubMed ID: 20726618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the Lewis Acidity of Boronic Acids through Interactions with Arene Substituents.
    Jian J; Hammink R; McKenzie CJ; Bickelhaupt FM; Poater J; Mecinović J
    Chemistry; 2022 Feb; 28(9):e202104044. PubMed ID: 34958482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbohydrate-interactive pDNA and siRNA gene vectors based on boronic acid functionalized poly(amido amine)s.
    Piest M; Ankoné M; Engbersen JF
    J Control Release; 2013 Aug; 169(3):266-75. PubMed ID: 23428840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron-Deficient Borinic Acid Polymers: Synthesis, Supramolecular Assembly, and Examination as Catalysts in Amide Bond Formation.
    Baraniak MK; Lalancette RA; Jäkle F
    Chemistry; 2019 Oct; 25(60):13799-13810. PubMed ID: 31408217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Control Over Silicone Synthesis using SiH Chemistry: The Piers-Rubinsztajn Reaction.
    Brook MA
    Chemistry; 2018 Jun; 24(34):8458-8469. PubMed ID: 29468751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly active, lipase silicone elastomers.
    Ragheb AM; Brook MA; Hrynyk M
    Biomaterials; 2005 May; 26(14):1653-64. PubMed ID: 15576139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond rheology modification: hydrophilically modified silicone elastomers provide new benefits.
    Starch MS; Fiori JE; Lin Z
    J Cosmet Sci; 2003; 54(2):193-205. PubMed ID: 12715095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Base and conformational specificity of an amine modification of DNA.
    Maibenco D; Tang P; Shinn R; Hanlon S
    Biopolymers; 1989 Feb; 28(2):549-71. PubMed ID: 2713452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent adaptable networks: smart, reconfigurable and responsive network systems.
    Kloxin CJ; Bowman CN
    Chem Soc Rev; 2013 Sep; 42(17):7161-73. PubMed ID: 23579959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatible, hyaluronic acid modified silicone elastomers.
    Alauzun JG; Young S; D'Souza R; Liu L; Brook MA; Sheardown HD
    Biomaterials; 2010 May; 31(13):3471-8. PubMed ID: 20138660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligomerization of electron-deficient vinyl monomers through an ate-complex mechanism: a new role for b(c(6) f(5) )(3) lewis Acid.
    Pouget E; Holgado-Garcia E; Vasilenko IV; Kostjuk SV; Campagne JM; Ganachaud F
    Macromol Rapid Commun; 2009 Jul; 30(13):1128-32. PubMed ID: 21706577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative evaluation of the change in hardness, of two commonly used maxillofacial prosthetic silicone elastomers, as subjected to simulated weathering in tropical climatic conditions.
    Kheur MG; Sethi T; Coward T; Jambhekar SS
    Eur J Prosthodont Restor Dent; 2012 Dec; 20(4):146-50. PubMed ID: 23495554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput Synthesis and Characterization of Aryl Silicones by Using the Piers-Rubinsztajn Reaction.
    Schneider AF; Brook MA
    Chemistry; 2019 Dec; 25(67):15367-15374. PubMed ID: 31595999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.