BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 24986752)

  • 1. Phototherapeutic functionality of biocompatible graphene oxide/dendrimer hybrids.
    Siriviriyanun A; Imae T; Calderó G; Solans C
    Colloids Surf B Biointerfaces; 2014 Sep; 121():469-73. PubMed ID: 24986752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyamidoamine dendrimer and oleic acid-functionalized graphene as biocompatible and efficient gene delivery vectors.
    Liu X; Ma D; Tang H; Tan L; Xie Q; Zhang Y; Ma M; Yao S
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8173-83. PubMed ID: 24836601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient assembly of multi-walled carbon nanotube-CdSe/ZnS quantum dot hybrids with high biocompatibility and fluorescence property.
    Zhang Y; Qin W; Tang H; Yan F; Tan L; Xie Q; Ma M; Zhang Y; Yao S
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):346-52. PubMed ID: 21680161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface modification of PAMAM dendrimer improves its biocompatibility.
    Ciolkowski M; Petersen JF; Ficker M; Janaszewska A; Christensen JB; Klajnert B; Bryszewska M
    Nanomedicine; 2012 Aug; 8(6):815-7. PubMed ID: 22542820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-photon fluorescence imaging and bimodal phototherapy of epidermal cancer cells with biocompatible self-assembled polymer nanoparticles.
    Kandoth N; Kirejev V; Monti S; Gref R; Ericson MB; Sortino S
    Biomacromolecules; 2014 May; 15(5):1768-76. PubMed ID: 24673610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Assembled Hybrids of Fluorescent Carbon Dots and PAMAM Dendrimers for Epirubicin Delivery and Intracellular Imaging.
    Matai I; Sachdev A; Gopinath P
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11423-35. PubMed ID: 25946165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex.
    Patri AK; Kukowska-Latallo JF; Baker JR
    Adv Drug Deliv Rev; 2005 Dec; 57(15):2203-14. PubMed ID: 16290254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-photon confocal imaging study: cell uptake of two photon dyes-labeled PAMAM dendrons in HeLa cells.
    Tsai HC; Imae T; Calderó G; Solans C
    J Biomed Mater Res A; 2012 Mar; 100(3):746-56. PubMed ID: 22238229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.
    Liu S; Zeng TH; Hofmann M; Burcombe E; Wei J; Jiang R; Kong J; Chen Y
    ACS Nano; 2011 Sep; 5(9):6971-80. PubMed ID: 21851105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive graphene oxide nanosheets: a versatile platform for the fabrication of graphene oxide-biomolecule/polymer nanohybrids.
    Xu LQ; Zhang B; Chen Y; Neoh KG; Kang ET; Fu GD
    Macromol Rapid Commun; 2013 Feb; 34(3):234-8. PubMed ID: 23172613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ocular biocompatibility evaluation of hydroxyl-functionalized graphene.
    Lin M; Zou R; Shi H; Yu S; Li X; Guo R; Yan L; Li G; Liu Y; Dai L
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():300-8. PubMed ID: 25746274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiofrequency ablation of drug-resistant cancer cells using molecularly targeted carboxyl-functionalized biodegradable graphene.
    Sasidharan A; Sivaram AJ; Retnakumari AP; Chandran P; Malarvizhi GL; Nair S; Koyakutty M
    Adv Healthc Mater; 2015 Apr; 4(5):679-84. PubMed ID: 25586821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-functional graphene as an in vitro and in vivo imaging probe.
    Gollavelli G; Ling YC
    Biomaterials; 2012 Mar; 33(8):2532-45. PubMed ID: 22206596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-inflammatory effects of three-dimensional graphene foams cultured with microglial cells.
    Song Q; Jiang Z; Li N; Liu P; Liu L; Tang M; Cheng G
    Biomaterials; 2014 Aug; 35(25):6930-40. PubMed ID: 24875763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence emission from dendrimers and its pH dependence.
    Wang D; Imae T
    J Am Chem Soc; 2004 Oct; 126(41):13204-5. PubMed ID: 15479057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disulfide cross-linked low generation dendrimers with high gene transfection efficacy, low cytotoxicity, and low cost.
    Liu H; Wang H; Yang W; Cheng Y
    J Am Chem Soc; 2012 Oct; 134(42):17680-7. PubMed ID: 23050493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy.
    Zhao T; Shen X; Li L; Guan Z; Gao N; Yuan P; Yao SQ; Xu QH; Xu GQ
    Nanoscale; 2012 Dec; 4(24):7712-9. PubMed ID: 23132010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of and biomolecule immobilization on the biocompatible multi-walled carbon nanotubes generated by functionalization with polyamidoamine dendrimers.
    Zhang B; Chen Q; Tang H; Xie Q; Ma M; Tan L; Zhang Y; Yao S
    Colloids Surf B Biointerfaces; 2010 Oct; 80(1):18-25. PubMed ID: 20542415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of a Pluronic F127 functionalized magnetite/graphene nanohybrid for chemophototherapy.
    Li Y; Liu J; Dong H; Liu G; Hu H
    Nanotechnology; 2014 Feb; 25(6):065602. PubMed ID: 24434914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability and biocompatibility of a library of polyester dendrimers in comparison to polyamidoamine dendrimers.
    Feliu N; Walter MV; Montañez MI; Kunzmann A; Hult A; Nyström A; Malkoch M; Fadeel B
    Biomaterials; 2012 Mar; 33(7):1970-81. PubMed ID: 22177621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.