BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24986767)

  • 1. Integration of [(Co(bpy)₃]²⁺ electron mediator with heterogeneous photocatalysts for CO₂ conversion.
    Lin J; Hou Y; Zheng Y; Wang X
    Chem Asian J; 2014 Sep; 9(9):2468-74. PubMed ID: 24986767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the photocatalytic reduction of CO
    Lin J; Sun X; Qin B; Yu T
    RSC Adv; 2018 Jun; 8(37):20543-20548. PubMed ID: 35542372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design considerations for a system for photocatalytic hydrogen production from water employing mixed-metal photochemical molecular devices for photoinitiated electron collection.
    Arachchige SM; Brown JR; Chang E; Jain A; Zigler DF; Rangan K; Brewer KJ
    Inorg Chem; 2009 Mar; 48(5):1989-2000. PubMed ID: 19235960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A solid chelating ligand: periodic mesoporous organosilica containing 2,2'-bipyridine within the pore walls.
    Waki M; Maegawa Y; Hara K; Goto Y; Shirai S; Yamada Y; Mizoshita N; Tani T; Chun WJ; Muratsugu S; Tada M; Fukuoka A; Inagaki S
    J Am Chem Soc; 2014 Mar; 136(10):4003-11. PubMed ID: 24571655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond.
    Cao L; Sahu S; Anilkumar P; Bunker CE; Xu J; Fernando KA; Wang P; Guliants EA; Tackett KN; Sun YP
    J Am Chem Soc; 2011 Apr; 133(13):4754-7. PubMed ID: 21401091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion.
    Fan W; Zhang Q; Wang Y
    Phys Chem Chem Phys; 2013 Feb; 15(8):2632-49. PubMed ID: 23322026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Re(bpy)(CO)
    Waki M; Yamanaka KI; Shirai S; Maegawa Y; Goto Y; Yamada Y; Inagaki S
    Chemistry; 2018 Mar; 24(15):3846-3853. PubMed ID: 29333628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous Single-Atom Catalyst for Visible-Light-Driven High-Turnover CO
    Gao C; Chen S; Wang Y; Wang J; Zheng X; Zhu J; Song L; Zhang W; Xiong Y
    Adv Mater; 2018 Mar; 30(13):e1704624. PubMed ID: 29441620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies.
    Takeda H; Koike K; Inoue H; Ishitani O
    J Am Chem Soc; 2008 Feb; 130(6):2023-31. PubMed ID: 18205359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon monoxide release catalysed by electron transfer: electrochemical and spectroscopic investigations of [Re(bpy-R)(CO)4](OTf) complexes relevant to CO2 reduction.
    Grice KA; Gu NX; Sampson MD; Kubiak CP
    Dalton Trans; 2013 Jun; 42(23):8498-503. PubMed ID: 23629511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tandem Photocatalysis of CO
    Xu R; Si DH; Zhao SS; Wu QJ; Wang XS; Liu TF; Zhao H; Cao R; Huang YB
    J Am Chem Soc; 2023 Apr; 145(14):8261-8270. PubMed ID: 36976930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inorganic Nanoparticles/Metal Organic Framework Hybrid Membrane Reactors for Efficient Photocatalytic Conversion of CO
    Maina JW; Schütz JA; Grundy L; Des Ligneris E; Yi Z; Kong L; Pozo-Gonzalo C; Ionescu M; Dumée LF
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35010-35017. PubMed ID: 28937742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin and Small-Size Graphene Oxide as an Electron Mediator for Perovskite-Based Z-Scheme System to Significantly Enhance Photocatalytic CO
    Mu YF; Zhang W; Dong GX; Su K; Zhang M; Lu TB
    Small; 2020 Jul; 16(29):e2002140. PubMed ID: 32510866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic reduction of CO₂: from molecules to semiconductors.
    Yui T; Tamaki Y; Sekizawa K; Ishitani O
    Top Curr Chem; 2011; 303():151-84. PubMed ID: 21526437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent Microporous Polymer Nanosheets for Efficient Photocatalytic CO
    Zhi Q; Zhou J; Liu W; Gong L; Liu W; Liu H; Wang K; Jiang J
    Small; 2022 May; 18(18):e2201314. PubMed ID: 35363425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting.
    Reza Gholipour M; Dinh CT; Béland F; Do TO
    Nanoscale; 2015 May; 7(18):8187-208. PubMed ID: 25804291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au-Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays.
    Kang Q; Wang T; Li P; Liu L; Chang K; Li M; Ye J
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):841-5. PubMed ID: 25422137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial photosynthesis: semiconductor photocatalytic fixation of CO2 to afford higher organic compounds.
    Hoffmann MR; Moss JA; Baum MM
    Dalton Trans; 2011 May; 40(19):5151-8. PubMed ID: 21373667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.