These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 24986789)
21. A simple and efficient oxidation of alcohols with ruthenium on carbon. Mori S; Takubo M; Makida K; Yanase T; Aoyagi S; Maegawa T; Monguchi Y; Sajiki H Chem Commun (Camb); 2009 Sep; (34):5159-61. PubMed ID: 20448979 [TBL] [Abstract][Full Text] [Related]
22. Dehydrogenative oxidation of alcohols in aqueous media using water-soluble and reusable Cp*Ir catalysts bearing a functional bipyridine ligand. Kawahara R; Fujita K; Yamaguchi R J Am Chem Soc; 2012 Feb; 134(8):3643-6. PubMed ID: 22339738 [TBL] [Abstract][Full Text] [Related]
23. Remarkable effect of bimetallic nanocluster catalysts for aerobic oxidation of alcohols: combining metals changes the activities and the reaction pathways to aldehydes/carboxylic acids or esters. Kaizuka K; Miyamura H; Kobayashi S J Am Chem Soc; 2010 Nov; 132(43):15096-8. PubMed ID: 20931964 [TBL] [Abstract][Full Text] [Related]
24. Multipolymer reaction system for selective aerobic alcohol oxidation: simultaneous use of multiple different polymer-supported ligands. Chung CW; Toy PH J Comb Chem; 2007; 9(1):115-20. PubMed ID: 17206839 [TBL] [Abstract][Full Text] [Related]
25. Oxidation of alcohols to carbonyl compounds with diisopropyl azodicarboxylate catalyzed by nitroxyl radicals. Hayashi M; Shibuya M; Iwabuchi Y J Org Chem; 2012 Mar; 77(6):3005-9. PubMed ID: 22352461 [TBL] [Abstract][Full Text] [Related]
26. Green oxidation of alcohols to carbonyl compounds by heterogeneous photocatalysis. Augugliaro V; Palmisano L ChemSusChem; 2010 Oct; 3(10):1135-8. PubMed ID: 20830724 [No Abstract] [Full Text] [Related]
27. Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system. Dijksman A; Marino-González A; Mairata I Payeras A; Arends IW; Sheldon RA J Am Chem Soc; 2001 Jul; 123(28):6826-33. PubMed ID: 11448187 [TBL] [Abstract][Full Text] [Related]
28. Photoredox-catalyzed Direct Reductive Amination of Aldehydes without an External Hydrogen/Hydride Source. Alam R; Molander GA Org Lett; 2018 May; 20(9):2680-2684. PubMed ID: 29652160 [TBL] [Abstract][Full Text] [Related]
29. Asymmetric rearrangement of racemic epoxides catalyzed by chiral Brønsted acids. Zhuang M; Du H Org Biomol Chem; 2013 Mar; 11(9):1460-2. PubMed ID: 23361172 [TBL] [Abstract][Full Text] [Related]
30. Iodine as a chemoselective reoxidant of TEMPO: application to the oxidation of alcohols to aldehydes and ketones. Miller RA; Hoerrner RS Org Lett; 2003 Feb; 5(3):285-7. PubMed ID: 12556173 [TBL] [Abstract][Full Text] [Related]
31. Transition-metal- and organic-solvent-free: a highly efficient anaerobic process for selective oxidation of alcohols to aldehydes and ketones in water. Gogoi P; Konwar D Org Biomol Chem; 2005 Oct; 3(19):3473-5. PubMed ID: 16172681 [TBL] [Abstract][Full Text] [Related]
33. Solar photochemical oxidation of alcohols using catalytic hydroquinone and copper nanoparticles under oxygen: oxidative cleavage of lignin models. Mitchell LJ; Moody CJ J Org Chem; 2014 Nov; 79(22):11091-100. PubMed ID: 25322456 [TBL] [Abstract][Full Text] [Related]
34. A sequential Pd/norbornene-catalyzed process generates o-biaryl carbaldehydes or ketones via a redox reaction or 6H-dibenzopyrans by C-O ring closure. Motti E; Della Ca' N; Xu D; Piersimoni A; Bedogni E; Zhou ZM; Catellani M Org Lett; 2012 Nov; 14(22):5792-5. PubMed ID: 23134173 [TBL] [Abstract][Full Text] [Related]
35. The effects of preparation conditions for a BaNbO2 N photocatalyst on its physical properties. Hisatomi T; Katayama C; Teramura K; Takata T; Moriya Y; Minegishi T; Katayama M; Nishiyama H; Yamada T; Domen K ChemSusChem; 2014 Jul; 7(7):2016-21. PubMed ID: 24782277 [TBL] [Abstract][Full Text] [Related]
36. Highly active, immobilized ruthenium catalysts for oxidation of alcohols to aldehydes and ketones. Preparation and use in both batch and flow systems. Kobayashi S; Miyamura H; Akiyama R; Ishida T J Am Chem Soc; 2005 Jun; 127(25):9251-4. PubMed ID: 15969605 [TBL] [Abstract][Full Text] [Related]
37. Copper nanoparticles on hydrotalcite as a heterogeneous catalyst for oxidant-free dehydrogenation of alcohols. Mitsudome T; Mikami Y; Ebata K; Mizugaki T; Jitsukawa K; Kaneda K Chem Commun (Camb); 2008 Oct; (39):4804-6. PubMed ID: 18830499 [TBL] [Abstract][Full Text] [Related]
38. Highly efficient controllable oxidation of alcohols to aldehydes and acids with sodium periodate catalyzed by water-soluble metalloporphyrins as biomimetic catalyst. Ren QG; Chen SY; Zhou XT; Ji HB Bioorg Med Chem; 2010 Dec; 18(23):8144-9. PubMed ID: 21051235 [TBL] [Abstract][Full Text] [Related]
39. Selective oxidation of alcohols in aqueous suspensions of rhodium ion-modified TiO2 photocatalysts under irradiation of visible light. Kitano S; Tanaka A; Hashimoto K; Kominami H Phys Chem Chem Phys; 2014 Jun; 16(24):12554-9. PubMed ID: 24832087 [TBL] [Abstract][Full Text] [Related]
40. Merging organocatalysis with transition metal catalysis: highly stereoselective α-alkylation of aldehydes. Xiao J Org Lett; 2012 Apr; 14(7):1716-9. PubMed ID: 22436110 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]