These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 24987116)
21. Bayesian network expansion identifies new ROS and biofilm regulators. Hodges AP; Dai D; Xiang Z; Woolf P; Xi C; He Y PLoS One; 2010 Mar; 5(3):e9513. PubMed ID: 20209085 [TBL] [Abstract][Full Text] [Related]
22. Exploiting the pathway structure of metabolism to reveal high-order epistasis. Imielinski M; Belta C BMC Syst Biol; 2008 Apr; 2():40. PubMed ID: 18447928 [TBL] [Abstract][Full Text] [Related]
23. Hierarchical organization of fluxes in Escherichia coli metabolic network: using flux coupling analysis for understanding the physiological properties of metabolic genes. Hosseini Z; Marashi SA Gene; 2015 May; 561(2):199-208. PubMed ID: 25688882 [TBL] [Abstract][Full Text] [Related]
24. Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks. He X; Qian W; Wang Z; Li Y; Zhang J Nat Genet; 2010 Mar; 42(3):272-6. PubMed ID: 20101242 [TBL] [Abstract][Full Text] [Related]
25. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach. Ma HW; Buer J; Zeng AP BMC Bioinformatics; 2004 Dec; 5():199. PubMed ID: 15603590 [TBL] [Abstract][Full Text] [Related]
26. Reconstruction of Escherichia coli transcriptional regulatory networks via regulon-based associations. Zare H; Sangurdekar D; Srivastava P; Kaveh M; Khodursky A BMC Syst Biol; 2009 Apr; 3():39. PubMed ID: 19366454 [TBL] [Abstract][Full Text] [Related]
27. Evolutionary plasticity and innovations in complex metabolic reaction networks. Matias Rodrigues JF; Wagner A PLoS Comput Biol; 2009 Dec; 5(12):e1000613. PubMed ID: 20019795 [TBL] [Abstract][Full Text] [Related]
28. A quantitative method for proteome reallocation using minimal regulatory interventions. Lastiri-Pancardo G; Mercado-Hernández JS; Kim J; Jiménez JI; Utrilla J Nat Chem Biol; 2020 Sep; 16(9):1026-1033. PubMed ID: 32661378 [TBL] [Abstract][Full Text] [Related]
29. Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns. Kaleta C; de Figueiredo LF; Schuster S Genome Res; 2009 Oct; 19(10):1872-83. PubMed ID: 19541909 [TBL] [Abstract][Full Text] [Related]
30. Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Tepper N; Shlomi T Bioinformatics; 2010 Feb; 26(4):536-43. PubMed ID: 20031969 [TBL] [Abstract][Full Text] [Related]
31. Signatures of arithmetic simplicity in metabolic network architecture. Riehl WJ; Krapivsky PL; Redner S; Segrè D PLoS Comput Biol; 2010 Apr; 6(4):e1000725. PubMed ID: 20369010 [TBL] [Abstract][Full Text] [Related]
32. Bacterial regulon modeling and prediction based on systematic cis regulatory motif analyses. Liu B; Zhou C; Li G; Zhang H; Zeng E; Liu Q; Ma Q Sci Rep; 2016 Mar; 6():23030. PubMed ID: 26975728 [TBL] [Abstract][Full Text] [Related]
33. Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach. Freyre-González JA; Alonso-Pavón JA; Treviño-Quintanilla LG; Collado-Vides J Genome Biol; 2008 Oct; 9(10):R154. PubMed ID: 18954463 [TBL] [Abstract][Full Text] [Related]
34. Inferring large-scale gene regulatory networks using a low-order constraint-based algorithm. Wang M; Augusto Benedito V; Xuechun Zhao P; Udvardi M Mol Biosyst; 2010 Jun; 6(6):988-98. PubMed ID: 20485743 [TBL] [Abstract][Full Text] [Related]
35. Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production. Wang Q; Chen X; Yang Y; Zhao X Appl Microbiol Biotechnol; 2006 Dec; 73(4):887-94. PubMed ID: 16927085 [TBL] [Abstract][Full Text] [Related]
36. An algorithm for the reduction of genome-scale metabolic network models to meaningful core models. Erdrich P; Steuer R; Klamt S BMC Syst Biol; 2015 Aug; 9():48. PubMed ID: 26286864 [TBL] [Abstract][Full Text] [Related]
38. Analysis on relationship between extreme pathways and correlated reaction sets. Xi Y; Chen YP; Cao M; Wang W; Wang F BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S58. PubMed ID: 19208161 [TBL] [Abstract][Full Text] [Related]
39. Escherichia coli achieves faster growth by increasing catalytic and translation rates of proteins. Valgepea K; Adamberg K; Seiman A; Vilu R Mol Biosyst; 2013 Sep; 9(9):2344-58. PubMed ID: 23824091 [TBL] [Abstract][Full Text] [Related]
40. The condition-dependent transcriptional network in Escherichia coli. Lemmens K; De Bie T; Dhollander T; Monsieurs P; De Moor B; Collado-Vides J; Engelen K; Marchal K Ann N Y Acad Sci; 2009 Mar; 1158():29-35. PubMed ID: 19348629 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]