These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 24987751)

  • 1. Hematite photoelectrodes for water splitting: evaluation of the role of film thickness by impedance spectroscopy.
    Lopes T; Andrade L; Le Formal F; Gratzel M; Sivula K; Mendes A
    Phys Chem Chem Phys; 2014 Aug; 16(31):16515-23. PubMed ID: 24987751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water oxidation at hematite photoelectrodes: the role of surface states.
    Klahr B; Gimenez S; Fabregat-Santiago F; Hamann T; Bisquert J
    J Am Chem Soc; 2012 Mar; 134(9):4294-302. PubMed ID: 22303953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting.
    Gurudayal ; Chee PM; Boix PP; Ge H; Yanan F; Barber J; Wong LH
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6852-9. PubMed ID: 25790720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical properties and relaxation times of the hematite/water interface.
    Shimizu K; Boily JF
    Langmuir; 2014 Aug; 30(31):9591-8. PubMed ID: 25072470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thickness-Dependent Photoelectrochemical Water Splitting on Ultrathin LaFeO3 Films Grown on Nb:SrTiO3.
    May KJ; Fenning DP; Ming T; Hong WT; Lee D; Stoerzinger KA; Biegalski MD; Kolpak AM; Shao-Horn Y
    J Phys Chem Lett; 2015 Mar; 6(6):977-85. PubMed ID: 26262856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of porosity and heterojunction effects of a mesoporous hematite electrode on photoelectrochemical water splitting.
    Liu J; Shahid M; Ko YS; Kim E; Ahn TK; Park JH; Kwon YU
    Phys Chem Chem Phys; 2013 Jun; 15(24):9775-82. PubMed ID: 23674049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating Water Splitting with CaFe2O4 Photocathodes by Electrochemical Impedance Spectroscopy.
    Díez-García MI; Gómez R
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21387-97. PubMed ID: 27466695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Platinum-Enhanced Electron Transfer and Surface Passivation through Ultrathin Film Aluminum Oxide (Al₂O₃) on Si(111)-CH₃ Photoelectrodes.
    Kim HJ; Kearney KL; Le LH; Pekarek RT; Rose MJ
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8572-84. PubMed ID: 25880534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Performance of Photoelectrochemical Water Splitting with ITO@α-Fe2O3 Core-Shell Nanowire Array as Photoanode.
    Yang J; Bao C; Yu T; Hu Y; Luo W; Zhu W; Fu G; Li Z; Gao H; Li F; Zou Z
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26482-90. PubMed ID: 26565922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microstructured p-Si photocathode outcompetes Pt as a counter electrode to hematite in photoelectrochemical water splitting.
    Kawde A; Annamalai A; Sellstedt A; Glatzel P; Wågberg T; Messinger J
    Dalton Trans; 2019 Jan; 48(4):1166-1170. PubMed ID: 30534760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Back electron-hole recombination in hematite photoanodes for water splitting.
    Le Formal F; Pendlebury SR; Cornuz M; Tilley SD; Grätzel M; Durrant JR
    J Am Chem Soc; 2014 Feb; 136(6):2564-74. PubMed ID: 24437340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.
    Li X; Bassi PS; Boix PP; Fang Y; Wong LH
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equivalent Circuit of Electrons and Holes in Thin Semiconductor Films for Photoelectrochemical Water Splitting Applications.
    Bertoluzzi L; Bisquert J
    J Phys Chem Lett; 2012 Sep; 3(17):2517-22. PubMed ID: 26292143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulating the Silicon/Hematite Microwire Photoanode by the Conformal Al
    Zhou Z; Wu S; Li L; Li L; Li X
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5978-5988. PubMed ID: 30657304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells.
    Wang Q; Moser JE; Grätzel M
    J Phys Chem B; 2005 Aug; 109(31):14945-53. PubMed ID: 16852893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with "Co-Pi"-coated hematite electrodes.
    Klahr B; Gimenez S; Fabregat-Santiago F; Bisquert J; Hamann TW
    J Am Chem Soc; 2012 Oct; 134(40):16693-700. PubMed ID: 22950478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrolyte ion adsorption and charge blocking effect at the hematite/aqueous solution interface: an electrochemical impedance study using multivariate data analysis.
    Shimizu K; Nyström J; Geladi P; Lindholm-Sethson B; Boily JF
    Phys Chem Chem Phys; 2015 May; 17(17):11560-8. PubMed ID: 25857599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical impedance study of the hematite/water interface.
    Shimizu K; Lasia A; Boily JF
    Langmuir; 2012 May; 28(20):7914-20. PubMed ID: 22540260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetics at the Surface of Photoelectrodes and Its Influence on the Photoelectrochemical Properties.
    Thorne JE; Li S; Du C; Qin G; Wang D
    J Phys Chem Lett; 2015 Oct; 6(20):4083-8. PubMed ID: 26722780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition.
    Klahr BM; Martinson AB; Hamann TW
    Langmuir; 2011 Jan; 27(1):461-8. PubMed ID: 21126056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.