These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 24987754)
1. Automated identification of brain new lesions in multiple sclerosis using subtraction images. Battaglini M; Rossi F; Grove RA; Stromillo ML; Whitcher B; Matthews PM; De Stefano N J Magn Reson Imaging; 2014 Jun; 39(6):1543-9. PubMed ID: 24987754 [TBL] [Abstract][Full Text] [Related]
2. Bayesian classification of multiple sclerosis lesions in longitudinal MRI using subtraction images. Elliott C; Francis SJ; Arnold DL; Collins DL; Arbel T Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):290-7. PubMed ID: 20879327 [TBL] [Abstract][Full Text] [Related]
3. Adaptive voxel, texture and temporal conditional random fields for detection of Gad-enhancing multiple sclerosis lesions in brain MRI. Karimaghaloo Z; Rivaz H; Arnold DL; Collins DL; Arbel T Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):543-50. PubMed ID: 24505804 [TBL] [Abstract][Full Text] [Related]
4. Automatic detection of gadolinium-enhancing multiple sclerosis lesions in brain MRI using conditional random fields. Karimaghaloo Z; Shah M; Francis SJ; Arnold DL; Collins DL; Arbel T IEEE Trans Med Imaging; 2012 Jun; 31(6):1181-94. PubMed ID: 22318484 [TBL] [Abstract][Full Text] [Related]
5. Hierarchical conditional random fields for detection of gad-enhancing lesions in multiple sclerosis. Karimaghaloo Z; Arnold DL; Collins DL; Arbel T Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):379-86. PubMed ID: 23286071 [TBL] [Abstract][Full Text] [Related]
6. Improved operator agreement and efficiency using the minimum area contour change method for delineation of hyperintense multiple sclerosis lesions on FLAIR MRI. Wack DS; Dwyer MG; Bergsland N; Ramasamy D; Di Perri C; Ranza L; Hussein S; Magnano C; Seals K; Zivadinov R BMC Med Imaging; 2013 Sep; 13():29. PubMed ID: 24004511 [TBL] [Abstract][Full Text] [Related]
7. Detection of Gad-enhancing lesions in multiple sclerosis using conditional random fields. Karimaghaloo Z; Shah M; Francis SJ; Arnold DL; Collins DL; Arbel T Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):41-8. PubMed ID: 20879381 [TBL] [Abstract][Full Text] [Related]
8. A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images. Khayati R; Vafadust M; Towhidkhah F; Nabavi SM Comput Med Imaging Graph; 2008 Mar; 32(2):124-33. PubMed ID: 18055174 [TBL] [Abstract][Full Text] [Related]
9. Adaptive multi-level conditional random fields for detection and segmentation of small enhanced pathology in medical images. Karimaghaloo Z; Arnold DL; Arbel T Med Image Anal; 2016 Jan; 27():17-30. PubMed ID: 26211811 [TBL] [Abstract][Full Text] [Related]
10. STREM: a robust multidimensional parametric method to segment MS lesions in MRI. Aït-Ali LS; Prima S; Hellier P; Carsin B; Edan G; Barillot C Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):409-16. PubMed ID: 16685872 [TBL] [Abstract][Full Text] [Related]
11. Multiple sclerosis lesion segmentation using an automatic multimodal graph cuts. García-Lorenzo D; Lecoeur J; Arnold DL; Collins DL; Barillot C Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):584-91. PubMed ID: 20426159 [TBL] [Abstract][Full Text] [Related]
12. Automated separation of diffusely abnormal white matter from focal white matter lesions on MRI in multiple sclerosis. Maranzano J; Dadar M; Zhernovaia M; Arnold DL; Collins DL; Narayanan S Neuroimage; 2020 Jun; 213():116690. PubMed ID: 32119987 [TBL] [Abstract][Full Text] [Related]
13. Segmentation of cortical MS lesions on MRI using automated laminar profile shape analysis. Tardif CL; Collins DL; Eskildsen SF; Richardson JB; Pike GB Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):181-8. PubMed ID: 20879398 [TBL] [Abstract][Full Text] [Related]
14. Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients. Nakamura K; Fisher E Neuroimage; 2009 Feb; 44(3):769-76. PubMed ID: 19007895 [TBL] [Abstract][Full Text] [Related]
15. A novel parametric method for non-rigid image registration. Cuzol A; Hellier P; Mémin E Inf Process Med Imaging; 2005; 19():456-67. PubMed ID: 17354717 [TBL] [Abstract][Full Text] [Related]
16. Disease modeling in multiple sclerosis: assessment and quantification of sources of variability in brain parenchymal fraction measurements. Sampat MP; Healy BC; Meier DS; Dell'Oglio E; Liguori M; Guttmann CR Neuroimage; 2010 Oct; 52(4):1367-73. PubMed ID: 20362675 [TBL] [Abstract][Full Text] [Related]
17. Automatic lesion incidence estimation and detection in multiple sclerosis using multisequence longitudinal MRI. Sweeney EM; Shinohara RT; Shea CD; Reich DS; Crainiceanu CM AJNR Am J Neuroradiol; 2013 Jan; 34(1):68-73. PubMed ID: 22766673 [TBL] [Abstract][Full Text] [Related]
18. Accurate GM atrophy quantification in MS using lesion-filling with co-registered 2D lesion masks. Popescu V; Ran NC; Barkhof F; Chard DT; Wheeler-Kingshott CA; Vrenken H Neuroimage Clin; 2014; 4():366-73. PubMed ID: 24567908 [TBL] [Abstract][Full Text] [Related]
19. Dynamic contrast-enhanced subtraction MRI for characterizing intratesticular mass lesions. Tsili AC; Argyropoulou MI; Astrakas LG; Ntoulia EA; Giannakis D; Sofikitis N; Tsampoulas K AJR Am J Roentgenol; 2013 Mar; 200(3):578-85. PubMed ID: 23436847 [TBL] [Abstract][Full Text] [Related]
20. In vivo quantitative evaluation of brain tissue damage in multiple sclerosis using gradient echo plural contrast imaging technique. Sati P; Cross AH; Luo J; Hildebolt CF; Yablonskiy DA Neuroimage; 2010 Jul; 51(3):1089-97. PubMed ID: 20338247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]