These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 24988017)
1. Thermodynamic prediction of growth temperature dependence in the adhesion of Pseudomonas aeruginosa and Staphylococcus aureus to stainless steel and polycarbonate. Abdallah M; Benoliel C; Jama C; Drider D; Dhulster P; Chihib NE J Food Prot; 2014 Jul; 77(7):1116-26. PubMed ID: 24988017 [TBL] [Abstract][Full Text] [Related]
2. Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Mitik-Dineva N; Wang J; Truong VK; Stoddart P; Malherbe F; Crawford RJ; Ivanova EP Curr Microbiol; 2009 Mar; 58(3):268-73. PubMed ID: 19020934 [TBL] [Abstract][Full Text] [Related]
3. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. Bagherifard S; Hickey DJ; de Luca AC; Malheiro VN; Markaki AE; Guagliano M; Webster TJ Biomaterials; 2015 Dec; 73():185-97. PubMed ID: 26410786 [TBL] [Abstract][Full Text] [Related]
4. Modulation of cell surface hydrophobicity and attachment of bacteria to abiotic surfaces and shrimp by Malaysian herb extracts. Hui YW; Dykes GA J Food Prot; 2012 Aug; 75(8):1507-11. PubMed ID: 22856578 [TBL] [Abstract][Full Text] [Related]
5. Does low hydroxyl group surface density explain less bacterial adhesion on porous alumina? Poli E; Ouk TS; Barrière G; Lévèque G; Sol V; Denes E Orthop Traumatol Surg Res; 2019 May; 105(3):473-477. PubMed ID: 30612953 [TBL] [Abstract][Full Text] [Related]
6. Impact of growth temperature and surface type on the resistance of Pseudomonas aeruginosa and Staphylococcus aureus biofilms to disinfectants. Abdallah M; Khelissa O; Ibrahim A; Benoliel C; Heliot L; Dhulster P; Chihib NE Int J Food Microbiol; 2015 Dec; 214():38-47. PubMed ID: 26233298 [TBL] [Abstract][Full Text] [Related]
7. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Bruinsma GM; van der Mei HC; Busscher HJ Biomaterials; 2001 Dec; 22(24):3217-24. PubMed ID: 11700793 [TBL] [Abstract][Full Text] [Related]
8. Bacterial factors influencing adhesion of Pseudomonas aeruginosa strains to a poly(ethylene oxide) brush. Roosjen A; Busscher HJ; Norde W; van der Mei HC Microbiology (Reading); 2006 Sep; 152(Pt 9):2673-2682. PubMed ID: 16946262 [TBL] [Abstract][Full Text] [Related]
9. Adhesion of B. subtilis spores and vegetative cells onto stainless steel--DLVO theories and AFM spectroscopy. Harimawan A; Zhong S; Lim CT; Ting YP J Colloid Interface Sci; 2013 Sep; 405():233-41. PubMed ID: 23777862 [TBL] [Abstract][Full Text] [Related]
10. Flagella but not type IV pili are involved in the initial adhesion of Pseudomonas aeruginosa PAO1 to hydrophobic or superhydrophobic surfaces. Bruzaud J; Tarrade J; Coudreuse A; Canette A; Herry JM; Taffin de Givenchy E; Darmanin T; Guittard F; Guilbaud M; Bellon-Fontaine MN Colloids Surf B Biointerfaces; 2015 Jul; 131():59-66. PubMed ID: 25950497 [TBL] [Abstract][Full Text] [Related]
11. Surface nanocrystallization for bacterial control. Yu B; Lesiuk A; Davis E; Irvin RT; Li DY Langmuir; 2010 Jul; 26(13):10930-4. PubMed ID: 20433185 [TBL] [Abstract][Full Text] [Related]
12. Bacterial adhesion capacity on food service contact surfaces. Fink R; Okanovič D; Dražič G; Abram A; Oder M; Jevšnik M; Bohinc K Int J Environ Health Res; 2017 Jun; 27(3):169-178. PubMed ID: 28347157 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of Pseudomonas aeruginosa adhesion to 304 and 316-L stainless steel: role of cell surface hydrophobicity. Vanhaecke E; Remon JP; Moors M; Raes F; De Rudder D; Van Peteghem A Appl Environ Microbiol; 1990 Mar; 56(3):788-95. PubMed ID: 2107796 [TBL] [Abstract][Full Text] [Related]
15. Effectiveness of sanitation with quaternary ammonium compound or chlorine on stainless steel and other domestic food-preparation surfaces. Frank JF; Chmielewski RA J Food Prot; 1997 Jan; 60(1):43-7. PubMed ID: 10465039 [TBL] [Abstract][Full Text] [Related]
16. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials. Schildhauer TA; Robie B; Muhr G; Köller M J Orthop Trauma; 2006 Jul; 20(7):476-84. PubMed ID: 16891939 [TBL] [Abstract][Full Text] [Related]
17. Atomic force microscopy in biofilm study. Chatterjee S; Biswas N; Datta A; Dey R; Maiti P Microscopy (Oxf); 2014 Aug; 63(4):269-78. PubMed ID: 24793174 [TBL] [Abstract][Full Text] [Related]
18. Stainless steel and polyethylene surfaces functionalized with silver nanoparticles. Fialho JF; Naves EA; Bernardes PC; Ferreira DC; Dos Anjos LD; Gelamo RV; de Sá JP; de Andrade NJ Food Sci Technol Int; 2018 Jan; 24(1):87-94. PubMed ID: 28929793 [TBL] [Abstract][Full Text] [Related]
19. Impact of growth temperature on the adhesion of colistin-resistant Escherichia coli strains isolated from pigs to food-contact-surfaces. Abdallah M; Mourad R; Khelissa SO; Jama C; Abozid M; Drider D; Chihib NE Arch Microbiol; 2019 Jul; 201(5):679-690. PubMed ID: 30796474 [TBL] [Abstract][Full Text] [Related]
20. Biofilm formation potential of Bacillus toyonensis and Pseudomonas aeruginosa on the stainless steel test surfaces in a model dairy batch system. Kütük D; Temiz A Folia Microbiol (Praha); 2022 Jun; 67(3):405-417. PubMed ID: 35031974 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]