BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24988023)

  • 1. Altered superoxide dismutase activity by carbohydrate utilization in a Lactococcus lactis strain.
    Kimoto-Nira H; Moriya N; Ohmori H; Suzuki C
    J Food Prot; 2014 Jul; 77(7):1161-7. PubMed ID: 24988023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis.
    Fordyce AM; Crow VL; Thomas TD
    Appl Environ Microbiol; 1984 Aug; 48(2):332-7. PubMed ID: 6435521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio.
    Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M
    J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of rare sugar D-allulose on acid production and probiotic activities of dairy lactic acid bacteria.
    Kimoto-Nira H; Moriya N; Hayakawa S; Kuramasu K; Ohmori H; Yamasaki S; Ogawa M
    J Dairy Sci; 2017 Jul; 100(7):5936-5944. PubMed ID: 28457550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Survival of a Lactococcus lactis strain varies with its carbohydrate preference under in vitro conditions simulated gastrointestinal tract.
    Kimoto-Nira H; Suzuki C; Sasaki K; Kobayashi M; Mizumachi K
    Int J Food Microbiol; 2010 Oct; 143(3):226-9. PubMed ID: 20810182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism.
    Garrigues C; Mercade M; Cocaign-Bousquet M; Lindley ND; Loubiere P
    Biotechnol Bioeng; 2001 Jul; 74(2):108-15. PubMed ID: 11369999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: pathways, products, and regulation.
    Thomas TD; Turner KW; Crow VL
    J Bacteriol; 1980 Nov; 144(2):672-82. PubMed ID: 6776093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase.
    Lopez de Felipe F; Kleerebezem M; de Vos WM; Hugenholtz J
    J Bacteriol; 1998 Aug; 180(15):3804-8. PubMed ID: 9683475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterofermentative carbohydrate metabolism of lactose-impaired mutants of Streptococcus lactis.
    Demko GM; Blanton SJ; Benoit RE
    J Bacteriol; 1972 Dec; 112(3):1335-45. PubMed ID: 4629656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short communication: Enzymatic perspective of galactosidases reveals variations in lactose metabolism among Lactococcus lactis strains.
    Yang Y; Li N; Jiang Y; Liu Z; Liu X; Zhao J; Zhang H; Chen W
    J Dairy Sci; 2019 Jul; 102(7):6027-6031. PubMed ID: 31056324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-culture of Lactobacillus delbrueckii and engineered Lactococcus lactis enhances stoichiometric yield of D-lactic acid from whey permeate.
    Sahoo TK; Jayaraman G
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5653-5662. PubMed ID: 31115633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catabolite inhibition and sequential metabolism of sugars by Streptococcus lactis.
    Thompson J; Turner KW; Thomas TD
    J Bacteriol; 1978 Mar; 133(3):1163-74. PubMed ID: 417061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the lactose plasmid on the metabolism of galactose by Streptococcus lactis.
    LeBlanc DJ; Crow VL; Lee LN; Garon CF
    J Bacteriol; 1979 Feb; 137(2):878-84. PubMed ID: 106044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyruvate flux distribution in NADH-oxidase-overproducing Lactococcus lactis strain as a function of culture conditions.
    Lopez de Felipe F; Hugenholtz J
    FEMS Microbiol Lett; 1999 Oct; 179(2):461-6. PubMed ID: 10518751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presence of galactose in precultures induces lacS and leads to short lag phase in lactose-grown Lactococcus lactis cultures.
    Lorántfy B; Johanson A; Faria-Oliveira F; Franzén CJ; Mapelli V; Olsson L
    J Ind Microbiol Biotechnol; 2019 Jan; 46(1):33-43. PubMed ID: 30413923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey.
    Barrett E; Stanton C; Zelder O; Fitzgerald G; Ross RP
    Appl Environ Microbiol; 2004 May; 70(5):2861-6. PubMed ID: 15128544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants.
    Cords BR; McKay LL
    J Bacteriol; 1974 Sep; 119(3):830-9. PubMed ID: 4368487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Media and process parameters affecting the growth, strain ratios and specific acidifying activities of a mixed lactic starter containing aroma-producing and probiotic strains.
    Savoie S; Champagne CP; Chiasson S; Audet P
    J Appl Microbiol; 2007 Jul; 103(1):163-74. PubMed ID: 17584462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis.
    Melchiorsen CR; Jokumsen KV; Villadsen J; Israelsen H; Arnau J
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):338-44. PubMed ID: 11935185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.