These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 24988062)

  • 1. Selective fusion of anchored droplets via changes in surfactant concentration.
    Tullis J; Park CL; Abbyad P
    Lab Chip; 2014 Sep; 14(17):3285-9. PubMed ID: 24988062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective droplet coalescence using microfluidic systems.
    Mazutis L; Griffiths AD
    Lab Chip; 2012 Apr; 12(10):1800-6. PubMed ID: 22453914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase.
    Chae SK; Lee CH; Lee SH; Kim TS; Kang JY
    Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion.
    Mazutis L; Baret JC; Griffiths AD
    Lab Chip; 2009 Sep; 9(18):2665-72. PubMed ID: 19704982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple method to evaluate the biochemical compatibility of oil/surfactant mixtures for experiments in microdroplets.
    Kaltenbach M; Devenish SR; Hollfelder F
    Lab Chip; 2012 Oct; 12(20):4185-92. PubMed ID: 22885600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A double droplet trap system for studying mass transport across a droplet-droplet interface.
    Bai Y; He X; Liu D; Patil SN; Bratton D; Huebner A; Hollfelder F; Abell C; Huck WT
    Lab Chip; 2010 May; 10(10):1281-5. PubMed ID: 20445881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusion and sorting of two parallel trains of droplets using a railroad-like channel network and guiding tracks.
    Xu L; Lee H; Panchapakesan R; Oh KW
    Lab Chip; 2012 Oct; 12(20):3936-42. PubMed ID: 22814673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel surgery-like strategy for droplet coalescence in microchannels.
    Deng NN; Sun SX; Wang W; Ju XJ; Xie R; Chu LY
    Lab Chip; 2013 Sep; 13(18):3653-7. PubMed ID: 23877051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear-driven redistribution of surfactant affects enzyme activity in well-mixed femtoliter droplets.
    Liu Y; Jung SY; Collier CP
    Anal Chem; 2009 Jun; 81(12):4922-8. PubMed ID: 19441820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous generation of multiple aqueous droplets in a microfluidic device.
    Lorenz RM; Fiorini GS; Jeffries GD; Lim DS; He M; Chiu DT
    Anal Chim Acta; 2008 Dec; 630(2):124-30. PubMed ID: 19012823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophoretic mobility of oil droplets in electrolyte and surfactant solutions.
    Wuzhang J; Song Y; Sun R; Pan X; Li D
    Electrophoresis; 2015 Oct; 36(19):2489-97. PubMed ID: 26140616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays.
    Fradet E; McDougall C; Abbyad P; Dangla R; McGloin D; Baroud CN
    Lab Chip; 2011 Dec; 11(24):4228-34. PubMed ID: 22045291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet freezing, docking, and the exchange of immiscible phase and surfactant around frozen droplets.
    Sgro AE; Chiu DT
    Lab Chip; 2010 Jul; 10(14):1873-7. PubMed ID: 20467690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemically induced coalescence in droplet-based microfluidics.
    Akartuna I; Aubrecht DM; Kodger TE; Weitz DA
    Lab Chip; 2015 Feb; 15(4):1140-4. PubMed ID: 25537080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions.
    Ziani K; Chang Y; McLandsborough L; McClements DJ
    J Agric Food Chem; 2011 Jun; 59(11):6247-55. PubMed ID: 21520914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise quantitative addition of multiple reagents into droplets in sequence using glass fiber-induced droplet coalescence.
    Li C; Xu J; Ma B
    Analyst; 2015 Feb; 140(3):701-5. PubMed ID: 25434979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive, high throughput detection of proteins in individual, surfactant-stabilized picoliter droplets using nanoelectrospray ionization mass spectrometry.
    Smith CA; Li X; Mize TH; Sharpe TD; Graziani EI; Abell C; Huck WT
    Anal Chem; 2013 Apr; 85(8):3812-6. PubMed ID: 23514243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast on-demand droplet fusion using transient cavitation bubbles.
    Li ZG; Ando K; Yu JQ; Liu AQ; Zhang JB; Ohl CD
    Lab Chip; 2011 Jun; 11(11):1879-85. PubMed ID: 21487578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.