BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 24988184)

  • 1. The spatiotemporal role of COX-2 in osteogenic and chondrogenic differentiation of periosteum-derived mesenchymal progenitors in fracture repair.
    Huang C; Xue M; Chen H; Jiao J; Herschman HR; O'Keefe RJ; Zhang X
    PLoS One; 2014; 9(7):e100079. PubMed ID: 24988184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo: implication for postnatal bone repair.
    Wang Q; Huang C; Zeng F; Xue M; Zhang X
    Am J Pathol; 2010 Dec; 177(6):3100-11. PubMed ID: 20971735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periosteal Mesenchymal Progenitor Dysfunction and Extraskeletally-Derived Fibrosis Contribute to Atrophic Fracture Nonunion.
    Wang L; Tower RJ; Chandra A; Yao L; Tong W; Xiong Z; Tang K; Zhang Y; Liu XS; Boerckel JD; Guo X; Ahn J; Qin L
    J Bone Miner Res; 2019 Mar; 34(3):520-532. PubMed ID: 30602062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of endogenous BMP-2 in periosteal progenitor cells is essential for bone healing.
    Wang Q; Huang C; Xue M; Zhang X
    Bone; 2011 Mar; 48(3):524-32. PubMed ID: 21056707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of the Prostaglandin EP-1 Receptor in Periosteum Progenitor Cells Enhances Osteoblast Differentiation and Fracture Repair.
    Feigenson M; Jonason JH; Shen J; Loiselle AE; Awad HA; O'Keefe RJ
    Ann Biomed Eng; 2020 Mar; 48(3):927-939. PubMed ID: 30980293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HIF-1α as a Regulator of BMP2-Induced Chondrogenic Differentiation, Osteogenic Differentiation, and Endochondral Ossification in Stem Cells.
    Zhou N; Hu N; Liao JY; Lin LB; Zhao C; Si WK; Yang Z; Yi SX; Fan TX; Bao W; Liang X; Wei X; Chen H; Chen C; Chen Q; Lin X; Huang W
    Cell Physiol Biochem; 2015; 36(1):44-60. PubMed ID: 25924688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging periosteal progenitor cells have reduced regenerative responsiveness to bone injury and to the anabolic actions of PTH 1-34 treatment.
    Yukata K; Xie C; Li TF; Takahata M; Hoak D; Kondabolu S; Zhang X; Awad HA; Schwarz EM; Beck CA; Jonason JH; O'Keefe RJ
    Bone; 2014 May; 62():79-89. PubMed ID: 24530870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone morphogenetic protein 2 stimulates endochondral ossification by regulating periosteal cell fate during bone repair.
    Yu YY; Lieu S; Lu C; Colnot C
    Bone; 2010 Jul; 47(1):65-73. PubMed ID: 20348041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sostdc1 deficiency accelerates fracture healing by promoting the expansion of periosteal mesenchymal stem cells.
    Collette NM; Yee CS; Hum NR; Murugesh DK; Christiansen BA; Xie L; Economides AN; Manilay JO; Robling AG; Loots GG
    Bone; 2016 Jul; 88():20-30. PubMed ID: 27102547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of Cbl-PI3K interaction modulates the periosteal response to fracture by enhancing osteogenic commitment and differentiation.
    Scanlon V; Walia B; Yu J; Hansen M; Drissi H; Maye P; Sanjay A
    Bone; 2017 Feb; 95():124-135. PubMed ID: 27884787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periosteal cells are a major source of soft callus in bone fracture.
    Murao H; Yamamoto K; Matsuda S; Akiyama H
    J Bone Miner Metab; 2013 Jul; 31(4):390-8. PubMed ID: 23475152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sox9 potentiates BMP2-induced chondrogenic differentiation and inhibits BMP2-induced osteogenic differentiation.
    Liao J; Hu N; Zhou N; Lin L; Zhao C; Yi S; Fan T; Bao W; Liang X; Chen H; Xu W; Chen C; Cheng Q; Zeng Y; Si W; Yang Z; Huang W
    PLoS One; 2014; 9(2):e89025. PubMed ID: 24551211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporary inhibition of the plasminogen activator inhibits periosteal chondrogenesis and promotes periosteal osteogenesis during appendicular bone fracture healing.
    Bravo D; Josephson AM; Bradaschia-Correa V; Wong MZ; Yim NL; Neibart SS; Lee SN; Huo J; Coughlin T; Mizrahi MM; Leucht P
    Bone; 2018 Jul; 112():97-106. PubMed ID: 29680264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpressing sonic hedgehog peptide restores periosteal bone formation in a murine bone allograft transplantation model.
    Huang C; Tang M; Yehling E; Zhang X
    Mol Ther; 2014 Feb; 22(2):430-439. PubMed ID: 24089140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenic Differentiation of Periosteal Cells During Fracture Healing.
    Wang T; Zhang X; Bikle DD
    J Cell Physiol; 2017 May; 232(5):913-921. PubMed ID: 27731505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chondrogenic induction of human osteoarthritic cartilage-derived mesenchymal stem cells activates mineralization and hypertrophic and osteogenic gene expression through a mechanomiR.
    Hu N; Gao Y; Jayasuriya CT; Liu W; Du H; Ding J; Feng M; Chen Q
    Arthritis Res Ther; 2019 Jul; 21(1):167. PubMed ID: 31287025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histochemical evidence of the initial chondrogenesis and osteogenesis in the periosteum of a rib fractured model: implications of osteocyte involvement in periosteal chondrogenesis.
    Li M; Amizuka N; Oda K; Tokunaga K; Ito T; Takeuchi K; Takagi R; Maeda T
    Microsc Res Tech; 2004 Jul; 64(4):330-42. PubMed ID: 15481050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FGFR3 in Periosteal Cells Drives Cartilage-to-Bone Transformation in Bone Repair.
    Julien A; Perrin S; Duchamp de Lageneste O; Carvalho C; Bensidhoum M; Legeai-Mallet L; Colnot C
    Stem Cell Reports; 2020 Oct; 15(4):955-967. PubMed ID: 32916123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal Stem/Progenitor Cells in Periosteum and Skeletal Muscle Share a Common Molecular Response to Bone Injury.
    Julien A; Perrin S; Martínez-Sarrà E; Kanagalingam A; Carvalho C; Luka M; Ménager M; Colnot C
    J Bone Miner Res; 2022 Aug; 37(8):1545-1561. PubMed ID: 35652423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro differentiation potential of the periosteal cells from a membrane bone, the quadratojugal of the embryonic chick.
    Fang J; Hall BK
    Dev Biol; 1996 Dec; 180(2):701-12. PubMed ID: 8954738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.