BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 24988347)

  • 1. Chloride-driven electromechanical phase lags at acoustic frequencies are generated by SLC26a5, the outer hair cell motor protein.
    Santos-Sacchi J; Song L
    Biophys J; 2014 Jul; 107(1):126-33. PubMed ID: 24988347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disparities in voltage-sensor charge and electromotility imply slow chloride-driven state transitions in the solute carrier SLC26a5.
    Song L; Santos-Sacchi J
    Proc Natl Acad Sci U S A; 2013 Mar; 110(10):3883-8. PubMed ID: 23431177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Frequency Response of Outer Hair Cell Voltage-Dependent Motility Is Limited by Kinetics of Prestin.
    Santos-Sacchi J; Tan W
    J Neurosci; 2018 Jun; 38(24):5495-5506. PubMed ID: 29899032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5.
    Santos-Sacchi J; Song L
    Biophys J; 2016 Jun; 110(11):2551-2561. PubMed ID: 27276272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Megahertz Sampling of Prestin (SLC26a5) Voltage-Sensor Charge Movements in Outer Hair Cell Membranes Reveals Ultrasonic Activity that May Support Electromotility and Cochlear Amplification.
    Santos-Sacchi J; Bai JP; Navaratnam D
    J Neurosci; 2023 Apr; 43(14):2460-2468. PubMed ID: 36868859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Outer hair cell electromotility is low-pass filtered relative to the molecular conformational changes that produce nonlinear capacitance.
    Santos-Sacchi J; Iwasa KH; Tan W
    J Gen Physiol; 2019 Dec; 151(12):1369-1385. PubMed ID: 31676485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anion control of voltage sensing by the motor protein prestin in outer hair cells.
    Rybalchenko V; Santos-Sacchi J
    Biophys J; 2008 Nov; 95(9):4439-47. PubMed ID: 18658219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maturation of Voltage-induced Shifts in SLC26a5 (Prestin) Operating Point during Trafficking and Membrane Insertion.
    Zhai F; Song L; Bai JP; Dai C; Navaratnam D; Santos-Sacchi J
    Neuroscience; 2020 Apr; 431():128-133. PubMed ID: 32061780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cl- flux through a non-selective, stretch-sensitive conductance influences the outer hair cell motor of the guinea-pig.
    Rybalchenko V; Santos-Sacchi J
    J Physiol; 2003 Mar; 547(Pt 3):873-91. PubMed ID: 12562920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex nonlinear capacitance in outer hair cell macro-patches: effects of membrane tension.
    Santos-Sacchi J; Tan W
    Sci Rep; 2020 Apr; 10(1):6222. PubMed ID: 32277153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How much prestin motor activity is required for normal hearing?
    Homma K; Takahashi S; Cheatham MA
    Hear Res; 2022 Sep; 423():108376. PubMed ID: 34848118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression and localization of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells.
    Belyantseva IA; Adler HJ; Curi R; Frolenkov GI; Kachar B
    J Neurosci; 2000 Dec; 20(24):RC116. PubMed ID: 11125015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State dependent effects on the frequency response of prestin's real and imaginary components of nonlinear capacitance.
    Santos-Sacchi J; Navaratnam D; Tan WJT
    Sci Rep; 2021 Aug; 11(1):16149. PubMed ID: 34373481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein.
    Oliver D; He DZ; Klöcker N; Ludwig J; Schulte U; Waldegger S; Ruppersberg JP; Dallos P; Fakler B
    Science; 2001 Jun; 292(5525):2340-3. PubMed ID: 11423665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloride binding and cholesterol effects on high frequency complex nonlinear capacitance (cNLC) in the mouse outer hair cell: experiment and molecular dynamics.
    Bai JP; Zhang C; Renigunta V; Oliver D; Navaratnam D; Beckstein O; Santos-Sacchi J
    bioRxiv; 2024 Jan; ():. PubMed ID: 38352579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between CFTR and prestin (SLC26A5).
    Homma K; Miller KK; Anderson CT; Sengupta S; Du GG; Aguiñaga S; Cheatham M; Dallos P; Zheng J
    Biochim Biophys Acta; 2010 Jun; 1798(6):1029-40. PubMed ID: 20138822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The chloride-channel blocker 9-anthracenecarboxylic acid reduces the nonlinear capacitance of prestin-associated charge movement.
    Harasztosi C; Gummer AW
    Eur J Neurosci; 2016 Apr; 43(8):1062-74. PubMed ID: 26869218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast electromechanical amplification in the lateral membrane of the outer hair cell.
    Santos-Sacchi J; Navarrete E; Song L
    Biophys J; 2009 Jan; 96(2):739-47. PubMed ID: 19167318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pathogenic roles of the p.R130S prestin variant in DFNB61 hearing loss.
    Takahashi S; Zhou Y; Cheatham MA; Homma K
    J Physiol; 2024 Mar; 602(6):1199-1210. PubMed ID: 38431907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promyelocytic leukemia zinc finger protein localizes to the cochlear outer hair cells and interacts with prestin, the outer hair cell motor protein.
    Nagy I; Bodmer M; Schmid S; Bodmer D
    Hear Res; 2005 Jun; 204(1-2):216-22. PubMed ID: 15925207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.