BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24988357)

  • 1. The importance of the hook region of the cochlea for bone-conduction hearing.
    Kim N; Steele CR; Puria S
    Biophys J; 2014 Jul; 107(1):233-41. PubMed ID: 24988357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superior-semicircular-canal dehiscence: effects of location, shape, and size on sound conduction.
    Kim N; Steele CR; Puria S
    Hear Res; 2013 Jul; 301():72-84. PubMed ID: 23562774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element simulation of cochlear traveling wave under air and bone conduction hearing.
    Ren LJ; Yu Y; Fang YQ; Hua C; Dai PD; Zhang TY
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1251-1265. PubMed ID: 33786715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial bone conduction: symmetric and anti-symmetric components.
    Kim N; Homma K; Puria S
    J Assoc Res Otolaryngol; 2011 Jun; 12(3):261-79. PubMed ID: 21360212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basilar membrane and osseous spiral lamina motion in human cadavers with air and bone conduction stimuli.
    Stenfelt S; Puria S; Hato N; Goode RL
    Hear Res; 2003 Jul; 181(1-2):131-43. PubMed ID: 12855371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential intracochlear sound pressure measurements in normal human temporal bones.
    Nakajima HH; Dong W; Olson ES; Merchant SN; Ravicz ME; Rosowski JJ
    J Assoc Res Otolaryngol; 2009 Mar; 10(1):23-36. PubMed ID: 19067078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone-conduction hyperacusis induced by superior canal dehiscence in human: the underlying mechanism.
    Guan X; Cheng YS; Galaiya DJ; Rosowski JJ; Lee DJ; Nakajima HH
    Sci Rep; 2020 Oct; 10(1):16564. PubMed ID: 33024221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmission of bone conducted sound - correlation between hearing perception and cochlear vibration.
    Eeg-Olofsson M; Stenfelt S; Taghavi H; Reinfeldt S; Håkansson B; Tengstrand T; Finizia C
    Hear Res; 2013 Dec; 306():11-20. PubMed ID: 24047594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones During Bone Conduction Stimulation.
    Stieger C; Guan X; Farahmand RB; Page BF; Merchant JP; Abur D; Nakajima HH
    J Assoc Res Otolaryngol; 2018 Oct; 19(5):523-539. PubMed ID: 30171386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibration direction sensitivity of the cochlea with bone conduction stimulation in guinea pigs.
    Zhao M; Fridberger A; Stenfelt S
    Sci Rep; 2021 Feb; 11(1):2855. PubMed ID: 33536482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Animal model of cochlear third window in the scala vestibuli or scala tympani.
    Attias J; Preis M; Shemesh R; Hadar T; Nageris BI
    Otol Neurotol; 2010 Aug; 31(6):985-90. PubMed ID: 20517168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inner ear contribution to bone conduction hearing in the human.
    Stenfelt S
    Hear Res; 2015 Nov; 329():41-51. PubMed ID: 25528492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of bone-conducted hearing: mathematical approach.
    Chan WX; Yoon YJ; Kim N
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1731-1740. PubMed ID: 30051339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla.
    Ruggero MA; Narayan SS; Temchin AN; Recio A
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11744-50. PubMed ID: 11050204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound pressures in the basal turn of the cat cochlea.
    Nedzelnitsky V
    J Acoust Soc Am; 1980 Dec; 68(6):1676-89. PubMed ID: 7462467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cochlear third window in the scala vestibuli: an animal model.
    Preis M; Attias J; Hadar T; Nageris BI
    Otol Neurotol; 2009 Aug; 30(5):657-60. PubMed ID: 19574945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detailed Analysis of the Space between the Semicircular Canals for the Purpose of Direct Bone Conduction Stimulation of the Inner Ear.
    Wojciechowski T; Lachowska M; Niemczyk K
    Audiol Neurootol; 2021; 26(1):35-44. PubMed ID: 32575102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.
    Péus D; Dobrev I; Prochazka L; Thoele K; Dalbert A; Boss A; Newcomb N; Probst R; Röösli C; Sim JH; Huber A; Pfiffner F
    Hear Res; 2017 Aug; 351():88-97. PubMed ID: 28601531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea.
    LePage EL
    J Acoust Soc Am; 1987 Jul; 82(1):139-54. PubMed ID: 3624635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine structure of the intracochlear potential field. II. Tone-evoked waveforms and cochlear microphonics.
    Zidanic M; Brownell WE
    J Neurophysiol; 1992 Jan; 67(1):108-24. PubMed ID: 1552313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.