These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 24988541)
1. Diaminohexane-assisted preparation of coral-like, poly(benzoxazine)-based porous carbons for electrochemical energy storage. Wang S; Zhang L; Han F; Li WC; Xu YY; Qu WH; Lu AH ACS Appl Mater Interfaces; 2014 Jul; 6(14):11101-9. PubMed ID: 24988541 [TBL] [Abstract][Full Text] [Related]
2. Porous carbon anodes for a high capacity lithium-ion battery obtained by incorporating silica into benzoxazine during polymerization. Guo DC; Han F; Lu AH Chemistry; 2015 Jan; 21(4):1520-5. PubMed ID: 25428788 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen-Doped Porous Carbon Nanosheets from Eco-Friendly Eucalyptus Leaves as High Performance Electrode Materials for Supercapacitors and Lithium Ion Batteries. Mondal AK; Kretschmer K; Zhao Y; Liu H; Wang C; Sun B; Wang G Chemistry; 2017 Mar; 23(15):3683-3690. PubMed ID: 28039908 [TBL] [Abstract][Full Text] [Related]
4. A microwave synthesis of mesoporous NiCo2O4 nanosheets as electrode materials for lithium-ion batteries and supercapacitors. Mondal AK; Su D; Chen S; Kretschmer K; Xie X; Ahn HJ; Wang G Chemphyschem; 2015 Jan; 16(1):169-75. PubMed ID: 25369782 [TBL] [Abstract][Full Text] [Related]
5. High-performance lithium-ion battery and symmetric supercapacitors based on FeCo₂O₄ nanoflakes electrodes. Mohamed SG; Chen CJ; Chen CK; Hu SF; Liu RS ACS Appl Mater Interfaces; 2014 Dec; 6(24):22701-8. PubMed ID: 25437918 [TBL] [Abstract][Full Text] [Related]
6. Porous nitrogen-doped carbon nanotubes derived from tubular polypyrrole for energy-storage applications. Xu G; Ding B; Nie P; Shen L; Wang J; Zhang X Chemistry; 2013 Sep; 19(37):12306-12. PubMed ID: 23881725 [TBL] [Abstract][Full Text] [Related]
7. Highly porous structure strategy to improve the SnO2 electrode performance for lithium-ion batteries. Yang T; Lu B Phys Chem Chem Phys; 2014 Mar; 16(9):4115-21. PubMed ID: 24448608 [TBL] [Abstract][Full Text] [Related]
8. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries. Hu L; Chen Q Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788 [TBL] [Abstract][Full Text] [Related]
9. Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors. Wan L; Wang J; Xie L; Sun Y; Li K ACS Appl Mater Interfaces; 2014 Sep; 6(17):15583-96. PubMed ID: 25137068 [TBL] [Abstract][Full Text] [Related]
10. Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries. Liu J; Song K; Zhu C; Chen CC; van Aken PA; Maier J; Yu Y ACS Nano; 2014 Jul; 8(7):7051-9. PubMed ID: 24940842 [TBL] [Abstract][Full Text] [Related]
11. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. Hou J; Cao C; Idrees F; Ma X ACS Nano; 2015 Mar; 9(3):2556-64. PubMed ID: 25703427 [TBL] [Abstract][Full Text] [Related]
12. Improved electrochemical performance of SnO2-mesoporous carbon hybrid as a negative electrode for lithium ion battery applications. Srinivasan NR; Mitra S; Bandyopadhyaya R Phys Chem Chem Phys; 2014 Apr; 16(14):6630-40. PubMed ID: 24576943 [TBL] [Abstract][Full Text] [Related]
13. Controlled preparation of interconnected 3D hierarchical porous carbons from bacterial cellulose-based composite monoliths for supercapacitors. Bai Q; Shen Y; Asoh TA; Li C; Dan Y; Uyama H Nanoscale; 2020 Jul; 12(28):15261-15274. PubMed ID: 32643739 [TBL] [Abstract][Full Text] [Related]
14. Facile Synthesis of Nitrogen-Containing Mesoporous Carbon for High-Performance Energy Storage Applications. Xu Y; Wang J; Chang Z; Ding B; Wang Y; Shen L; Mi C; Dou H; Zhang X Chemistry; 2016 Mar; 22(12):4256-62. PubMed ID: 26849174 [TBL] [Abstract][Full Text] [Related]
15. Porous Hybrid Composites of Few-Layer MoS2 Nanosheets Embedded in a Carbon Matrix with an Excellent Supercapacitor Electrode Performance. Ji H; Liu C; Wang T; Chen J; Mao Z; Zhao J; Hou W; Yang G Small; 2015 Dec; 11(48):6480-90. PubMed ID: 26551452 [TBL] [Abstract][Full Text] [Related]
16. Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices. Wang X; Liu B; Xiang Q; Wang Q; Hou X; Chen D; Shen G ChemSusChem; 2014 Jan; 7(1):308-13. PubMed ID: 24339208 [TBL] [Abstract][Full Text] [Related]
17. 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries. Choi BG; Chang SJ; Lee YB; Bae JS; Kim HJ; Huh YS Nanoscale; 2012 Sep; 4(19):5924-30. PubMed ID: 22899185 [TBL] [Abstract][Full Text] [Related]
18. Peanut-Shell-like Porous Carbon from Nitrogen-Containing Poly-N-phenylethanolamine for High-Performance Supercapacitor. Wei X; Wan S; Jiang X; Wang Z; Gao S ACS Appl Mater Interfaces; 2015 Oct; 7(40):22238-45. PubMed ID: 26394705 [TBL] [Abstract][Full Text] [Related]
19. Facile synthesis of loaf-like ZnMn₂O₄ nanorods and their excellent performance in Li-ion batteries. Bai Z; Fan N; Sun C; Ju Z; Guo C; Yang J; Qian Y Nanoscale; 2013 Mar; 5(6):2442-7. PubMed ID: 23403451 [TBL] [Abstract][Full Text] [Related]
20. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Hao P; Zhao Z; Tian J; Li H; Sang Y; Yu G; Cai H; Liu H; Wong CP; Umar A Nanoscale; 2014 Oct; 6(20):12120-9. PubMed ID: 25201446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]