These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. RemA (YlzA) and RemB (YaaB) regulate extracellular matrix operon expression and biofilm formation in Bacillus subtilis. Winkelman JT; Blair KM; Kearns DB J Bacteriol; 2009 Jun; 191(12):3981-91. PubMed ID: 19363116 [TBL] [Abstract][Full Text] [Related]
8. Sticking together: building a biofilm the Bacillus subtilis way. Vlamakis H; Chai Y; Beauregard P; Losick R; Kolter R Nat Rev Microbiol; 2013 Mar; 11(3):157-68. PubMed ID: 23353768 [TBL] [Abstract][Full Text] [Related]
9. Control of cell fate by the formation of an architecturally complex bacterial community. Vlamakis H; Aguilar C; Losick R; Kolter R Genes Dev; 2008 Apr; 22(7):945-53. PubMed ID: 18381896 [TBL] [Abstract][Full Text] [Related]
10. Cyclic di-AMP Acts as an Extracellular Signal That Impacts Townsley L; Yannarell SM; Huynh TN; Woodward JJ; Shank EA mBio; 2018 Mar; 9(2):. PubMed ID: 29588402 [TBL] [Abstract][Full Text] [Related]
11. Kin Discrimination Modifies Strain Distribution, Spatial Segregation, and Incorporation of Extracellular Matrix Polysaccharide Mutants of Bacillus subtilis Strains into Mixed Floating Biofilms. Bolješić M; Kraigher B; Dogsa I; Jerič Kokelj B; Mandic-Mulec I Appl Environ Microbiol; 2022 Sep; 88(18):e0087122. PubMed ID: 36094206 [TBL] [Abstract][Full Text] [Related]
12. Regulation of Biofilm Aging and Dispersal in Bartolini M; Cogliati S; Vileta D; Bauman C; Rateni L; Leñini C; Argañaraz F; Francisco M; Villalba JM; Steil L; Völker U; Grau R J Bacteriol; 2019 Jan; 201(2):. PubMed ID: 30396900 [TBL] [Abstract][Full Text] [Related]
13. Defining the Expression, Production, and Signaling Roles of Specialized Metabolites during Bacillus subtilis Differentiation. Schoenborn AA; Yannarell SM; Wallace ED; Clapper H; Weinstein IC; Shank EA J Bacteriol; 2021 Oct; 203(22):e0033721. PubMed ID: 34460312 [TBL] [Abstract][Full Text] [Related]
14. A pivotal role for the response regulator DegU in controlling multicellular behaviour. Murray EJ; Kiley TB; Stanley-Wall NR Microbiology (Reading); 2009 Jan; 155(Pt 1):1-8. PubMed ID: 19118340 [TBL] [Abstract][Full Text] [Related]
15. MstX and a putative potassium channel facilitate biofilm formation in Bacillus subtilis. Lundberg ME; Becker EC; Choe S PLoS One; 2013; 8(5):e60993. PubMed ID: 23737939 [TBL] [Abstract][Full Text] [Related]
16. SinR is a mutational target for fine-tuning biofilm formation in laboratory-evolved strains of Bacillus subtilis. Leiman SA; Arboleda LC; Spina JS; McLoon AL BMC Microbiol; 2014 Nov; 14():301. PubMed ID: 25433524 [TBL] [Abstract][Full Text] [Related]
17. The majority of the matrix protein TapA is dispensable for Bacillus subtilis colony biofilm architecture. Earl C; Arnaouteli S; Bamford NC; Porter M; Sukhodub T; MacPhee CE; Stanley-Wall NR Mol Microbiol; 2020 Dec; 114(6):920-933. PubMed ID: 32491277 [TBL] [Abstract][Full Text] [Related]
18. Bacillus subtilis biofilm induction by plant polysaccharides. Beauregard PB; Chai Y; Vlamakis H; Losick R; Kolter R Proc Natl Acad Sci U S A; 2013 Apr; 110(17):E1621-30. PubMed ID: 23569226 [TBL] [Abstract][Full Text] [Related]
19. Selective Pressure for Biofilm Formation in Bacillus subtilis: Differential Effect of Mutations in the Master Regulator SinR on Bistability. Kampf J; Gerwig J; Kruse K; Cleverley R; Dormeyer M; Grünberger A; Kohlheyer D; Commichau FM; Lewis RJ; Stülke J mBio; 2018 Sep; 9(5):. PubMed ID: 30181249 [TBL] [Abstract][Full Text] [Related]
20. Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. Stanley NR; Britton RA; Grossman AD; Lazazzera BA J Bacteriol; 2003 Mar; 185(6):1951-7. PubMed ID: 12618459 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]