These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24988911)

  • 1. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields.
    Arai-Sanoh Y; Takai T; Yoshinaga S; Nakano H; Kojima M; Sakakibara H; Kondo M; Uga Y
    Sci Rep; 2014 Jul; 4():5563. PubMed ID: 24988911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dro1, a major QTL involved in deep rooting of rice under upland field conditions.
    Uga Y; Okuno K; Yano M
    J Exp Bot; 2011 May; 62(8):2485-94. PubMed ID: 21212298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1.
    Uga Y; Kitomi Y; Yamamoto E; Kanno N; Kawai S; Mizubayashi T; Fukuoka S
    Rice (N Y); 2015; 8():8. PubMed ID: 25844113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Root angle modifications by the
    Kitomi Y; Hanzawa E; Kuya N; Inoue H; Hara N; Kawai S; Kanno N; Endo M; Sugimoto K; Yamazaki T; Sakamoto S; Sentoku N; Wu J; Kanno H; Mitsuda N; Toriyama K; Sato T; Uga Y
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21242-21250. PubMed ID: 32817523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.
    Uga Y; Sugimoto K; Ogawa S; Rane J; Ishitani M; Hara N; Kitomi Y; Inukai Y; Ono K; Kanno N; Inoue H; Takehisa H; Motoyama R; Nagamura Y; Wu J; Matsumoto T; Takai T; Okuno K; Yano M
    Nat Genet; 2013 Sep; 45(9):1097-102. PubMed ID: 23913002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergy between a shallow root system with a DRO1 homologue and localized P application improves P uptake of lowland rice.
    Oo AZ; Tsujimoto Y; Mukai M; Nishigaki T; Takai T; Uga Y
    Sci Rep; 2021 May; 11(1):9484. PubMed ID: 33947950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine Mapping of
    Kitomi Y; Nakao E; Kawai S; Kanno N; Ando T; Fukuoka S; Irie K; Uga Y
    G3 (Bethesda); 2018 Feb; 8(2):727-735. PubMed ID: 29279303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DRO1 influences root system architecture in Arabidopsis and Prunus species.
    Guseman JM; Webb K; Srinivasan C; Dardick C
    Plant J; 2017 Mar; 89(6):1093-1105. PubMed ID: 28029738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen and phosphorus losses from paddy fields and the yield of rice with different water and nitrogen management practices.
    Qi D; Wu Q; Zhu J
    Sci Rep; 2020 Jun; 10(1):9734. PubMed ID: 32546803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A major QTL controlling deep rooting on rice chromosome 4.
    Uga Y; Yamamoto E; Kanno N; Kawai S; Mizubayashi T; Fukuoka S
    Sci Rep; 2013 Oct; 3():3040. PubMed ID: 24154623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Expression of QTL
    Fu X; Xu J; Zhou M; Chen M; Shen L; Li T; Zhu Y; Wang J; Hu J; Zhu L; Gao Z; Dong G; Guo L; Ren D; Chen G; Lin J; Qian Q; Zhang G
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30781568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.).
    Zhang X; Wang L; Ma F; Yang J; Su M
    J Sci Food Agric; 2017 Jul; 97(9):2919-2925. PubMed ID: 27935053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of qSOR1, a major rice QTL involved in soil-surface rooting in paddy fields.
    Uga Y; Hanzawa E; Nagai S; Sasaki K; Yano M; Sato T
    Theor Appl Genet; 2012 Jan; 124(1):75-86. PubMed ID: 21894467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus uptake, partitioning and redistribution during grain filling in rice.
    Julia C; Wissuwa M; Kretzschmar T; Jeong K; Rose T
    Ann Bot; 2016 Nov; 118(6):1151-1162. PubMed ID: 27590335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restricting the above ground sink corrects the root/shoot ratio and substantially boosts the yield potential per panicle in field-grown rice (Oryza sativa L.).
    Nada RM; Abogadallah GM
    Physiol Plant; 2016 Apr; 156(4):371-86. PubMed ID: 26296302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of root development and nutrient uptake of two chinese cultivars of hybrid rice to nitrogen and phosphorus fertilization in Sichuan Province, China.
    Yang G; Nabi F; Sajid S; Kaleri AR; Jakhar AM; Cheng L; Raspor M; Muhammad N; Ma J; Hu Y
    Mol Biol Rep; 2021 Dec; 48(12):8009-8021. PubMed ID: 34665398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of functionally important microRNAs from rice inflorescence at heading stage of a qDTY4.1-QTL bearing Near Isogenic Line under drought conditions.
    Cheah BH; Jadhao S; Vasudevan M; Wickneswari R; Nadarajah K
    PLoS One; 2017; 12(10):e0186382. PubMed ID: 29045473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of improved sodium uptake ability on grain yields of rice plants under low potassium supply.
    Ochiai K; Oba K; Oda K; Miyamoto T; Matoh T
    Plant Direct; 2022 Apr; 6(4):e387. PubMed ID: 35434473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants.
    Park KY; Kim EY; Seo YS; Kim WT
    Plant Mol Biol; 2016 Mar; 90(4-5):517-32. PubMed ID: 26803502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zn uptake, translocation and grain Zn loading in rice (Oryza sativa L.) genotypes selected for Zn deficiency tolerance and high grain Zn.
    Impa SM; Morete MJ; Ismail AM; Schulin R; Johnson-Beebout SE
    J Exp Bot; 2013 Jul; 64(10):2739-51. PubMed ID: 23698631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.