These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24989121)

  • 1. Carbon-coated ceramic membrane reactor for the production of hydrogen by aqueous-phase reforming of sorbitol.
    Neira D'Angelo MF; Ordomsky V; Schouten JC; van der Schaaf J; Nijhuis TA
    ChemSusChem; 2014 Jul; 7(7):2007-15. PubMed ID: 24989121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renewable hydrogen by aqueous-phase reforming of glucose.
    Davda RR; Dumesic JA
    Chem Commun (Camb); 2004 Jan; (1):36-7. PubMed ID: 14737320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen production from glucose and sorbitol by sorption-enhanced steam reforming: challenges and promises.
    He L; Chen D
    ChemSusChem; 2012 Mar; 5(3):587-95. PubMed ID: 22378630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward highly-effective and sustainable hydrogen production: bio-ethanol oxidative steam reforming coupled with water splitting in a thin tubular membrane reactor.
    Zhu N; Dong X; Liu Z; Zhang G; Jin W; Xu N
    Chem Commun (Camb); 2012 Jul; 48(57):7137-9. PubMed ID: 22428158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auto-thermal reforming using mixed ion-electronic conducting ceramic membranes for a small-scale H₂ production plant.
    Spallina V; Melchiori T; Gallucci F; van Sint Annaland M
    Molecules; 2015 Mar; 20(3):4998-5023. PubMed ID: 25793545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction products and transformations of intermediates in the aqueous-phase reforming of sorbitol.
    Kirilin AV; Tokarev AV; Murzina EV; Kustov LM; Mikkola JP; Murzin DY
    ChemSusChem; 2010 Jun; 3(6):708-18. PubMed ID: 20512804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen production through aqueous-phase reforming of ethylene glycol in a washcoated microchannel.
    D'Angelo MF; Ordomsky V; Paunovic V; van der Schaaf J; Schouten JC; Nijhuis TA
    ChemSusChem; 2013 Sep; 6(9):1708-16. PubMed ID: 23592593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the Water Phase State on the Thermodynamics of Aqueous-Phase Reforming for Hydrogen Production.
    Ripken RM; Meuldijk J; Gardeniers JGE; Le Gac S
    ChemSusChem; 2017 Dec; 10(24):4909-4913. PubMed ID: 28691770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.
    Cortright RD; Davda RR; Dumesic JA
    Nature; 2002 Aug; 418(6901):964-7. PubMed ID: 12198544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates.
    Huber GW; Cortright RD; Dumesic JA
    Angew Chem Int Ed Engl; 2004 Mar; 43(12):1549-51. PubMed ID: 15022230
    [No Abstract]   [Full Text] [Related]  

  • 11. Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment.
    Jedidi I; Saïdi S; Khemakhem S; Larbot A; Elloumi-Ammar N; Fourati A; Charfi A; Salah AB; Amar RB
    J Hazard Mater; 2009 Dec; 172(1):152-8. PubMed ID: 19699033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrothermal deoxygenation of triglycerides over Pd/C aided by in situ hydrogen production from glycerol reforming.
    Hollak SA; Ariëns MA; de Jong KP; van Es DS
    ChemSusChem; 2014 Apr; 7(4):1057-62. PubMed ID: 24596129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes.
    Karnik BS; Davies SH; Chen KC; Jaglowski DR; Baumann MJ; Masten SJ
    Water Res; 2005 Feb; 39(4):728-34. PubMed ID: 15707646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The removal of disinfection by-product precursors from water with ceramic membranes.
    Harman BI; Koseoglu H; Yigit NO; Sayilgan E; Beyhan M; Kitis M
    Water Sci Technol; 2010; 62(3):547-55. PubMed ID: 20706002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of biohydrogen by aqueous phase reforming of polyols over platinum catalysts supported on three-dimensionally bimodal mesoporous carbon.
    Park HJ; Kim HD; Kim TW; Jeong KE; Chae HJ; Jeong SY; Chung YM; Park YK; Kim CU
    ChemSusChem; 2012 Apr; 5(4):629-33. PubMed ID: 22415941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen-based tubular catalytic membrane for removing nitrate from groundwater.
    Chen YX; Zhang Y; Liu HY; Sharma KR; Chen GH
    Environ Technol; 2004 Feb; 25(2):227-34. PubMed ID: 15116881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pervaporation study for the dehydration of tetrahydrofuran-water mixtures by polymeric and ceramic membranes.
    McGinness CA; Slater CS; Savelski MJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Dec; 43(14):1673-84. PubMed ID: 18988105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen production via aqueous-phase reforming for high-temperature proton exchange membrane fuel cells - a review.
    Lakhtaria P; Ribeirinha P; Huhtinen W; Viik S; Sousa J; Mendes A
    Open Res Eur; 2021; 1():81. PubMed ID: 37645145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective production of methane from aqueous biocarbohydrate streams over a mixture of platinum and ruthenium catalysts.
    Neira D'Angelo MF; Ordomsky V; van der Schaaf J; Schouten JC; Nijhuis TA
    ChemSusChem; 2014 Feb; 7(2):627-30. PubMed ID: 24218081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.