BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24989373)

  • 1. Influence of nuclear interactions in polyethylene range compensators for carbon-ion radiotherapy.
    Kanematsu N; Koba Y; Ogata R; Himukai T
    Med Phys; 2014 Jul; 41(7):071704. PubMed ID: 24989373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Monte Carlo code MCPTV--Monte Carlo dose calculation in radiation therapy with carbon ions.
    Karg J; Speer S; Schmidt M; Mueller R
    Phys Med Biol; 2010 Jul; 55(13):3917-36. PubMed ID: 20571213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast Biological Modeling for Voxel-based Heavy Ion Treatment Planning Using the Mechanistic Repair-Misrepair-Fixation Model and Nuclear Fragment Spectra.
    Kamp F; Cabal G; Mairani A; Parodi K; Wilkens JJ; Carlson DJ
    Int J Radiat Oncol Biol Phys; 2015 Nov; 93(3):557-68. PubMed ID: 26460998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal lobe reactions after carbon ion radiation therapy: comparison of relative biological effectiveness-weighted tolerance doses predicted by local effect models I and IV.
    Gillmann C; Jäkel O; Schlampp I; Karger CP
    Int J Radiat Oncol Biol Phys; 2014 Apr; 88(5):1136-41. PubMed ID: 24661667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Validation of Single Field Multi-Ion Particle Therapy Treatments.
    Kopp B; Mein S; Dokic I; Harrabi S; Böhlen TT; Haberer T; Debus J; Abdollahi A; Mairani A
    Int J Radiat Oncol Biol Phys; 2020 Jan; 106(1):194-205. PubMed ID: 31610250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dose prescription in carbon ion radiotherapy: a planning study to compare NIRS and LEM approaches with a clinically-oriented strategy.
    Fossati P; Molinelli S; Matsufuji N; Ciocca M; Mirandola A; Mairani A; Mizoe J; Hasegawa A; Imai R; Kamada T; Orecchia R; Tsujii H
    Phys Med Biol; 2012 Nov; 57(22):7543-54. PubMed ID: 23104051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of nuclear interactions in body tissues on tumor dose in carbon-ion radiotherapy.
    Inaniwa T; Kanematsu N; Tsuji H; Kamada T
    Med Phys; 2015 Dec; 42(12):7132-7. PubMed ID: 26632067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A trichrome beam model for biological dose calculation in scanned carbon-ion radiotherapy treatment planning.
    Inaniwa T; Kanematsu N
    Phys Med Biol; 2015 Jan; 60(1):437-51. PubMed ID: 25658007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose-response curves for MRI-detected radiation-induced temporal lobe reactions in patients after proton and carbon ion therapy: Does the same RBE-weighted dose lead to the same biological effect?
    Gillmann C; Lomax AJ; Weber DC; Jäkel O; Karger CP
    Radiother Oncol; 2018 Jul; 128(1):109-114. PubMed ID: 29459152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the dosimetric impact of a Ni-Ti fiducial marker in carbon ion and proton beams.
    Herrmann R; Carl J; Jäkel O; Bassler N; Petersen JB
    Acta Oncol; 2010 Oct; 49(7):1160-4. PubMed ID: 20831508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical probabilistic modeling of RBE-weighted dose for ion therapy.
    Wieser HP; Hennig P; Wahl N; Bangert M
    Phys Med Biol; 2017 Nov; 62(23):8959-8982. PubMed ID: 28980974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EUD-based biological optimization for carbon ion therapy.
    Brüningk SC; Kamp F; Wilkens JJ
    Med Phys; 2015 Nov; 42(11):6248-57. PubMed ID: 26520717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of potential advantages of relevant ions for particle therapy: a model based study.
    Grün R; Friedrich T; Krämer M; Zink K; Durante M; Engenhart-Cabillic R; Scholz M
    Med Phys; 2015 Feb; 42(2):1037-47. PubMed ID: 25652516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary calculation of RBE-weighted dose distribution for cerebral radionecrosis in carbon-ion treatment planning.
    Kase Y; Himukai T; Nagano A; Tameshige Y; Minohara S; Matsufuji N; Mizoe J; Fossati P; Hasegawa A; Kanai T
    J Radiat Res; 2011; 52(6):789-96. PubMed ID: 21921434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment planning for carbon ion radiotherapy in Germany: review of clinical trials and treatment planning studies.
    Jäkel O; Krämer M; Schulz-Ertner D; Heeg P; Karger CP; Didinger B; Nikoghosyan A; Debus J
    Radiother Oncol; 2004 Dec; 73 Suppl 2():S86-91. PubMed ID: 15971317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dosimetric characterization of a microDiamond detector in clinical scanned carbon ion beams.
    Marinelli M; Prestopino G; Verona C; Verona-Rinati G; Ciocca M; Mirandola A; Mairani A; Raffaele L; Magro G
    Med Phys; 2015 Apr; 42(4):2085-93. PubMed ID: 25832098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear-interaction correction of integrated depth dose in carbon-ion radiotherapy treatment planning.
    Inaniwa T; Kanematsu N; Hara Y; Furukawa T
    Phys Med Biol; 2015 Jan; 60(1):421-35. PubMed ID: 25658006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A semi-analytical radiobiological model may assist treatment planning in light ion radiotherapy.
    Kundrát P
    Phys Med Biol; 2007 Dec; 52(23):6813-30. PubMed ID: 18029977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced treatment planning methods for efficient radiation therapy with laser accelerated proton and ion beams.
    Schell S; Wilkens JJ
    Med Phys; 2010 Oct; 37(10):5330-40. PubMed ID: 21089768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of out-of-field dose distribution in carbon-ion radiotherapy by Monte Carlo simulation.
    Yonai S; Matsufuji N; Namba M
    Med Phys; 2012 Aug; 39(8):5028-39. PubMed ID: 22894428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.