These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 24989383)
1. A population-based tissue probability map-driven level set method for fully automated mammographic density estimations. Kim Y; Hong BW; Kim SJ; Kim JH Med Phys; 2014 Jul; 41(7):071905. PubMed ID: 24989383 [TBL] [Abstract][Full Text] [Related]
2. Semi-automated and fully automated mammographic density measurement and breast cancer risk prediction. Llobet R; Pollán M; Antón J; Miranda-García J; Casals M; Martínez I; Ruiz-Perales F; Pérez-Gómez B; Salas-Trejo D; Pérez-Cortés JC Comput Methods Programs Biomed; 2014 Sep; 116(2):105-15. PubMed ID: 24636804 [TBL] [Abstract][Full Text] [Related]
3. Breast cancer risk analysis based on a novel segmentation framework for digital mammograms. Chen X; Moschidis E; Taylor C; Astley S Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):536-43. PubMed ID: 25333160 [TBL] [Abstract][Full Text] [Related]
4. A completely automated CAD system for mass detection in a large mammographic database. Bellotti R; De Carlo F; Tangaro S; Gargano G; Maggipinto G; Castellano M; Massafra R; Cascio D; Fauci F; Magro R; Raso G; Lauria A; Forni G; Bagnasco S; Cerello P; Zanon E; Cheran SC; Lopez Torres E; Bottigli U; Masala GL; Oliva P; Retico A; Fantacci ME; Cataldo R; De Mitri I; De Nunzio G Med Phys; 2006 Aug; 33(8):3066-75. PubMed ID: 16964885 [TBL] [Abstract][Full Text] [Related]
5. Hybrid segmentation of mass in mammograms using template matching and dynamic programming. Song E; Xu S; Xu X; Zeng J; Lan Y; Zhang S; Hung CC Acad Radiol; 2010 Nov; 17(11):1414-24. PubMed ID: 20817575 [TBL] [Abstract][Full Text] [Related]
6. Using computer-extracted image features for modeling of error-making patterns in detection of mammographic masses among radiology residents. Zhang J; Lo JY; Kuzmiak CM; Ghate SV; Yoon SC; Mazurowski MA Med Phys; 2014 Sep; 41(9):091907. PubMed ID: 25186394 [TBL] [Abstract][Full Text] [Related]
7. Computerized nipple identification for multiple image analysis in computer-aided diagnosis. Zhou C; Chan HP; Paramagul C; Roubidoux MA; Sahiner B; Hadjiiski LM; Petrick N Med Phys; 2004 Oct; 31(10):2871-82. PubMed ID: 15543797 [TBL] [Abstract][Full Text] [Related]
8. A spatial shape constrained clustering method for mammographic mass segmentation. Lou JY; Yang XL; Cao AZ Comput Math Methods Med; 2015; 2015():891692. PubMed ID: 25737739 [TBL] [Abstract][Full Text] [Related]
9. Parenchymal texture analysis in digital mammography: A fully automated pipeline for breast cancer risk assessment. Zheng Y; Keller BM; Ray S; Wang Y; Conant EF; Gee JC; Kontos D Med Phys; 2015 Jul; 42(7):4149-60. PubMed ID: 26133615 [TBL] [Abstract][Full Text] [Related]
10. Development of intelligent systems based on Bayesian regularization network and neuro-fuzzy models for mass detection in mammograms: A comparative analysis. Mahersia H; Boulehmi H; Hamrouni K Comput Methods Programs Biomed; 2016 Apr; 126():46-62. PubMed ID: 26831269 [TBL] [Abstract][Full Text] [Related]
11. Breast Density Analysis Using an Automatic Density Segmentation Algorithm. Oliver A; Tortajada M; Lladó X; Freixenet J; Ganau S; Tortajada L; Vilagran M; Sentís M; Martí R J Digit Imaging; 2015 Oct; 28(5):604-12. PubMed ID: 25720749 [TBL] [Abstract][Full Text] [Related]
12. A robust method for segmenting pectoral muscle in mediolateral oblique (MLO) mammograms. Yin K; Yan S; Song C; Zheng B Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):237-248. PubMed ID: 30288698 [TBL] [Abstract][Full Text] [Related]
13. A fully automated scheme for mammographic segmentation and classification based on breast density and asymmetry. Tzikopoulos SD; Mavroforakis ME; Georgiou HV; Dimitropoulos N; Theodoridis S Comput Methods Programs Biomed; 2011 Apr; 102(1):47-63. PubMed ID: 21306782 [TBL] [Abstract][Full Text] [Related]
14. Automatic detection of anomalies in screening mammograms. Kendall EJ; Barnett MG; Chytyk-Praznik K BMC Med Imaging; 2013 Dec; 13():43. PubMed ID: 24330643 [TBL] [Abstract][Full Text] [Related]
15. Steepest changes of a probability-based cost function for delineation of mammographic masses: a validation study. Kinnard L; Lo SC; Makariou E; Osicka T; Wang P; Chouikha MF; Freedman MT Med Phys; 2004 Oct; 31(10):2796-810. PubMed ID: 15543787 [TBL] [Abstract][Full Text] [Related]
16. Influence of using manual or automatic breast density information in a mass detection CAD system. Oliver A; Lladó X; Freixenet J; Martí R; Pérez E; Pont J; Zwiggelaar R Acad Radiol; 2010 Jul; 17(7):877-83. PubMed ID: 20540910 [TBL] [Abstract][Full Text] [Related]
17. The quantitative analysis of mammographic densities. Byng JW; Boyd NF; Fishell E; Jong RA; Yaffe MJ Phys Med Biol; 1994 Oct; 39(10):1629-38. PubMed ID: 15551535 [TBL] [Abstract][Full Text] [Related]
18. Reliability of Computer-Assisted Breast Density Estimation: Comparison of Interactive Thresholding, Semiautomated, and Fully Automated Methods. Kang E; Lee EJ; Jang M; Kim SM; Kim Y; Chun M; Tai JH; Han W; Kim SW; Kim JH AJR Am J Roentgenol; 2016 Jul; 207(1):126-34. PubMed ID: 27187523 [TBL] [Abstract][Full Text] [Related]