These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 24989686)
1. Fractalkine receptor regulates microglial neurotoxicity in an experimental mouse glaucoma model. Wang K; Peng B; Lin B Glia; 2014 Dec; 62(12):1943-54. PubMed ID: 24989686 [TBL] [Abstract][Full Text] [Related]
2. Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Bosco A; Inman DM; Steele MR; Wu G; Soto I; Marsh-Armstrong N; Hubbard WC; Calkins DJ; Horner PJ; Vetter ML Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1437-46. PubMed ID: 18385061 [TBL] [Abstract][Full Text] [Related]
3. Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension. Trost A; Motloch K; Bruckner D; Schroedl F; Bogner B; Kaser-Eichberger A; Runge C; Strohmaier C; Klein B; Aigner L; Reitsamer HA Exp Eye Res; 2015 Jul; 136():59-71. PubMed ID: 26001526 [TBL] [Abstract][Full Text] [Related]
4. Improved retinal ganglion cell survival through retinal microglia suppression by a chinese herb extract, triptolide, in the DBA/2J mouse model of glaucoma. Yang F; Wu L; Guo X; Wang D; Li Y Ocul Immunol Inflamm; 2013 Oct; 21(5):378-89. PubMed ID: 23876132 [TBL] [Abstract][Full Text] [Related]
5. Paradoxical effects of minocycline in the developing mouse somatosensory cortex. Arnoux I; Hoshiko M; Sanz Diez A; Audinat E Glia; 2014 Mar; 62(3):399-410. PubMed ID: 24357027 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of the cysteinyl leukotriene pathways increases survival of RGCs and reduces microglial activation in ocular hypertension. Trost A; Motloch K; Koller A; Bruckner D; Runge C; Schroedl F; Bogner B; Kaser-Eichberger A; Strohmaier C; Ladek AM; Preishuber-Pfluegl J; Brunner SM; Aigner L; Reitsamer HA Exp Eye Res; 2021 Dec; 213():108806. PubMed ID: 34715090 [TBL] [Abstract][Full Text] [Related]
7. CX van der Maten G; Henck V; Wieloch T; Ruscher K BMC Neurosci; 2017 Jan; 18(1):11. PubMed ID: 28061814 [TBL] [Abstract][Full Text] [Related]
9. Reduced inflammatory and neuropathic pain and decreased spinal microglial response in fractalkine receptor (CX3CR1) knockout mice. Staniland AA; Clark AK; Wodarski R; Sasso O; Maione F; D'Acquisto F; Malcangio M J Neurochem; 2010 Aug; 114(4):1143-57. PubMed ID: 20524966 [TBL] [Abstract][Full Text] [Related]
10. The Effect of A2A Receptor Antagonist on Microglial Activation in Experimental Glaucoma. Liu X; Huang P; Wang J; Yang Z; Huang S; Luo X; Qi J; Shen X; Zhong Y Invest Ophthalmol Vis Sci; 2016 Mar; 57(3):776-86. PubMed ID: 26934133 [TBL] [Abstract][Full Text] [Related]
11. Adaptive phenotype of microglial cells during the normal postnatal development of the somatosensory "Barrel" cortex. Arnoux I; Hoshiko M; Mandavy L; Avignone E; Yamamoto N; Audinat E Glia; 2013 Oct; 61(10):1582-94. PubMed ID: 23893820 [TBL] [Abstract][Full Text] [Related]
12. Role of fractalkine-CX3CR1 pathway in seizure-induced microglial activation, neurodegeneration, and neuroblast production in the adult rat brain. Ali I; Chugh D; Ekdahl CT Neurobiol Dis; 2015 Feb; 74():194-203. PubMed ID: 25461978 [TBL] [Abstract][Full Text] [Related]
13. Expression pattern of Ccr2 and Cx3cr1 in inherited retinal degeneration. Kohno H; Koso H; Okano K; Sundermeier TR; Saito S; Watanabe S; Tsuneoka H; Sakai T J Neuroinflammation; 2015 Oct; 12():188. PubMed ID: 26458944 [TBL] [Abstract][Full Text] [Related]
14. A Novel Synthetic Steroid of 2β,3α,5α-Trihydroxy-androst-6-one Alleviates the Loss of Rat Retinal Ganglion Cells Caused by Acute Intraocular Hypertension via Inhibiting the Inflammatory Activation of Microglia. Sun HJ; Xue DD; Lu BZ; Li Y; Sheng LX; Zhu Z; Zhou YW; Zhang JX; Lin GJ; Lin SZ; Yan GM; Chen YP; Yin W Molecules; 2019 Jan; 24(2):. PubMed ID: 30641903 [TBL] [Abstract][Full Text] [Related]
15. Suppression of microglial activation is neuroprotective in a mouse model of human retinitis pigmentosa. Peng B; Xiao J; Wang K; So KF; Tipoe GL; Lin B J Neurosci; 2014 Jun; 34(24):8139-50. PubMed ID: 24920619 [TBL] [Abstract][Full Text] [Related]
16. Neurodegeneration severity can be predicted from early microglia alterations monitored in vivo in a mouse model of chronic glaucoma. Bosco A; Romero CO; Breen KT; Chagovetz AA; Steele MR; Ambati BK; Vetter ML Dis Model Mech; 2015 May; 8(5):443-55. PubMed ID: 25755083 [TBL] [Abstract][Full Text] [Related]
17. The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. Harada T; Harada C; Nakamura K; Quah HM; Okumura A; Namekata K; Saeki T; Aihara M; Yoshida H; Mitani A; Tanaka K J Clin Invest; 2007 Jul; 117(7):1763-70. PubMed ID: 17607354 [TBL] [Abstract][Full Text] [Related]
18. Detection of early neuron degeneration and accompanying microglial responses in the retina of a rat model of glaucoma. Naskar R; Wissing M; Thanos S Invest Ophthalmol Vis Sci; 2002 Sep; 43(9):2962-8. PubMed ID: 12202516 [TBL] [Abstract][Full Text] [Related]
19. Adoptive transfer of immune cells from glaucomatous mice provokes retinal ganglion cell loss in recipients. Gramlich OW; Ding QJ; Zhu W; Cook A; Anderson MG; Kuehn MH Acta Neuropathol Commun; 2015 Sep; 3():56. PubMed ID: 26374513 [TBL] [Abstract][Full Text] [Related]
20. Microglial activation during epileptogenesis in a mouse model of tuberous sclerosis complex. Zhang B; Zou J; Han L; Rensing N; Wong M Epilepsia; 2016 Aug; 57(8):1317-25. PubMed ID: 27263494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]