These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24989801)

  • 1. Deep Imaging: the next frontier in microscopy.
    Roukos V; Misteli T
    Histochem Cell Biol; 2014 Aug; 142(2):125-31. PubMed ID: 24989801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale tracking and classification for automatic analysis of cell migration and proliferation, and experimental optimization of high-throughput screens of neuroblastoma cells.
    Harder N; Batra R; Diessl N; Gogolin S; Eils R; Westermann F; König R; Rohr K
    Cytometry A; 2015 Jun; 87(6):524-40. PubMed ID: 25630981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and application of automatic high-resolution light microscopy for cell-based screens.
    Paran Y; Lavelin I; Naffar-Abu-Amara S; Winograd-Katz S; Liron Y; Geiger B; Kam Z
    Methods Enzymol; 2006; 414():228-47. PubMed ID: 17110195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-throughput RNAi screens.
    Yin Z; Zhou X; Bakal C; Li F; Sun Y; Perrimon N; Wong ST
    BMC Bioinformatics; 2008 Jun; 9():264. PubMed ID: 18534020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotype recognition with combined features and random subspace classifier ensemble.
    Zhang B; Pham TD
    BMC Bioinformatics; 2011 Apr; 12():128. PubMed ID: 21529372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Imaging-Based Assays in Microplate Formats for High-Content Screening.
    Fogel AI; Martin SE; Hasson SA
    Methods Mol Biol; 2016; 1439():273-304. PubMed ID: 27317002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robert Feulgen Prize Lecture 1995. Electronic light microscopy: present capabilities and future prospects.
    Shotton DM
    Histochem Cell Biol; 1995 Aug; 104(2):97-137. PubMed ID: 8536077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DetecTiff: a novel image analysis routine for high-content screening microscopy.
    Gilbert DF; Meinhof T; Pepperkok R; Runz H
    J Biomol Screen; 2009 Sep; 14(8):944-55. PubMed ID: 19641223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy.
    Buggenthin F; Marr C; Schwarzfischer M; Hoppe PS; Hilsenbeck O; Schroeder T; Theis FJ
    BMC Bioinformatics; 2013 Oct; 14():297. PubMed ID: 24090363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Descriptive no more: the dawn of high-throughput microscopy.
    Roukos V; Misteli T; Schmidt CK
    Trends Cell Biol; 2010 Sep; 20(9):503-6. PubMed ID: 20667736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications.
    Rabha D; Sarmah A; Nath P
    J Microsc; 2019 Oct; 276(1):13-20. PubMed ID: 31498428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated image mosaics by non-automated light microscopes: the MicroMos software tool.
    Piccinini F; Bevilacqua A; Lucarelli E
    J Microsc; 2013 Dec; 252(3):226-50. PubMed ID: 24111790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated microscopy for high-content RNAi screening.
    Conrad C; Gerlich DW
    J Cell Biol; 2010 Feb; 188(4):453-61. PubMed ID: 20176920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic identification and clustering of chromosome phenotypes in a genome wide RNAi screen by time-lapse imaging.
    Walter T; Held M; Neumann B; Hériché JK; Conrad C; Pepperkok R; Ellenberg J
    J Struct Biol; 2010 Apr; 170(1):1-9. PubMed ID: 19854275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward the virtual cell: automated approaches to building models of subcellular organization "learned" from microscopy images.
    Buck TE; Li J; Rohde GK; Murphy RF
    Bioessays; 2012 Sep; 34(9):791-9. PubMed ID: 22777818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsupervised automated high throughput phenotyping of RNAi time-lapse movies.
    Failmezger H; Fröhlich H; Tresch A
    BMC Bioinformatics; 2013 Oct; 14():292. PubMed ID: 24090185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-content siRNA screening.
    Krausz E
    Mol Biosyst; 2007 Apr; 3(4):232-40. PubMed ID: 17372651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput RNAi screening by time-lapse imaging of live human cells.
    Neumann B; Held M; Liebel U; Erfle H; Rogers P; Pepperkok R; Ellenberg J
    Nat Methods; 2006 May; 3(5):385-90. PubMed ID: 16628209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-content screening and analysis of the Golgi complex.
    Galea G; Simpson JC
    Methods Cell Biol; 2013; 118():281-95. PubMed ID: 24295313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images.
    Haass-Koffler CL; Naeemuddin M; Bartlett SE
    J Vis Exp; 2012 Aug; (66):e4233. PubMed ID: 22951512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.