These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 24989858)
1. PMS6: a fast algorithm for motif discovery. Bandyopadhyay S; Sahni S; Rajasekaran S Int J Bioinform Res Appl; 2014; 10(4-5):369-83. PubMed ID: 24989858 [TBL] [Abstract][Full Text] [Related]
2. PMS6: A Fast Algorithm for Motif Discovery. Bandyopadhyay S; Sahni S; Rajasekaran S IEEE Int Conf Comput Adv Bio Med Sci; 2012; ():1-6. PubMed ID: 23959399 [TBL] [Abstract][Full Text] [Related]
3. PMS6MC: A Multicore Algorithm for Motif Discovery. Bandyopadhyay S; Sahni S; Rajasekaran S Algorithms; 2013 Nov; 6(4):805-823. PubMed ID: 25309700 [TBL] [Abstract][Full Text] [Related]
4. Efficient sequential and parallel algorithms for finding edit distance based motifs. Pal S; Xiao P; Rajasekaran S BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):465. PubMed ID: 27557423 [TBL] [Abstract][Full Text] [Related]
5. Fast exact algorithms for the closest string and substring problems with application to the planted (L, d)-motif model. Chen ZZ; Wang L IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1400-10. PubMed ID: 21282867 [TBL] [Abstract][Full Text] [Related]
6. PMS5: an efficient exact algorithm for the (ℓ, d)-motif finding problem. Dinh H; Rajasekaran S; Kundeti VK BMC Bioinformatics; 2011 Oct; 12():410. PubMed ID: 22024209 [TBL] [Abstract][Full Text] [Related]
7. Improved Exact Enumerative Algorithms for the Planted (l, d)-Motif Search Problem. Tanaka S IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(2):361-74. PubMed ID: 26355783 [TBL] [Abstract][Full Text] [Related]
8. Efficient sequential and parallel algorithms for planted motif search. Nicolae M; Rajasekaran S BMC Bioinformatics; 2014 Jan; 15():34. PubMed ID: 24479443 [TBL] [Abstract][Full Text] [Related]
9. An Efficient Exact Algorithm for the Motif Stem Search Problem over Large Alphabets. Yu Q; Huo H; Vitter JS; Huan J; Nekrich Y IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):384-97. PubMed ID: 26357225 [TBL] [Abstract][Full Text] [Related]
10. Discovering Motifs in Biological Sequences Using the Micron Automata Processor. Roy I; Aluru S IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(1):99-111. PubMed ID: 26886735 [TBL] [Abstract][Full Text] [Related]
11. Fast and practical algorithms for planted (l, d) motif search. Davila J; Balla S; Rajasekaran S IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(4):544-52. PubMed ID: 17975266 [TBL] [Abstract][Full Text] [Related]
12. qPMS7: a fast algorithm for finding (ℓ, d)-motifs in DNA and protein sequences. Dinh H; Rajasekaran S; Davila J PLoS One; 2012; 7(7):e41425. PubMed ID: 22848493 [TBL] [Abstract][Full Text] [Related]
13. A correlated motif approach for finding short linear motifs from protein interaction networks. Tan SH; Hugo W; Sung WK; Ng SK BMC Bioinformatics; 2006 Nov; 7():502. PubMed ID: 17107624 [TBL] [Abstract][Full Text] [Related]
15. Conservative extraction of over-represented extensible motifs. Apostolico A; Comin M; Parida L Bioinformatics; 2005 Jun; 21 Suppl 1():i9-18. PubMed ID: 15961503 [TBL] [Abstract][Full Text] [Related]
16. An Efficient Exact Algorithm for Planted Motif Search on Large DNA Sequence Datasets. Yu Q; Hu Y; Hu X; Lan J; Guo Y IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1542-1551. PubMed ID: 38801693 [TBL] [Abstract][Full Text] [Related]
17. SamSelect: a sample sequence selection algorithm for quorum planted motif search on large DNA datasets. Yu Q; Wei D; Huo H BMC Bioinformatics; 2018 Jun; 19(1):228. PubMed ID: 29914360 [TBL] [Abstract][Full Text] [Related]