BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24989859)

  • 1. Searching for repeats, as an example of using the generalised Ruzzo-Tompa algorithm to find optimal subsequences with gaps.
    Spouge JL; Mariño-Ramírez L; Sheetlin SL
    Int J Bioinform Res Appl; 2014; 10(4-5):384-408. PubMed ID: 24989859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A linear time algorithm for finding all maximal scoring subsequences.
    Ruzzo WL; Tompa M
    Proc Int Conf Intell Syst Mol Biol; 1999; ():234-41. PubMed ID: 10786306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detailed protein sequence alignment based on Spectral Similarity Score (SSS).
    Gupta K; Thomas D; Vidya SV; Venkatesh KV; Ramakumar S
    BMC Bioinformatics; 2005 Apr; 6():105. PubMed ID: 15850477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heuristic reusable dynamic programming: efficient updates of local sequence alignment.
    Hong C; Tewfik AH
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(4):570-82. PubMed ID: 19875856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast quantum search algorithms in protein sequence comparisons: quantum bioinformatics.
    Hollenberg LC
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt B):7532-5. PubMed ID: 11102126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hardware accelerator for genomic sequence alignment.
    Chiang J; Studniberg M; Shaw J; Seto S; Truong K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5787-9. PubMed ID: 17946720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GATA: a graphic alignment tool for comparative sequence analysis.
    Nix DA; Eisen MB
    BMC Bioinformatics; 2005 Jan; 6():9. PubMed ID: 15655071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FEAST: sensitive local alignment with multiple rates of evolution.
    Hudek AK; Brown DG
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(3):698-709. PubMed ID: 20733242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel algorithm for identifying low-complexity regions in a protein sequence.
    Li X; Kahveci T
    Bioinformatics; 2006 Dec; 22(24):2980-7. PubMed ID: 17018537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A space-efficient algorithm for the constrained pairwise sequence alignment problem.
    He D; Arslan AN
    Genome Inform; 2005; 16(2):237-46. PubMed ID: 16901106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences.
    Bininda-Emonds OR
    BMC Bioinformatics; 2005 Jun; 6():156. PubMed ID: 15969769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CSA: an efficient algorithm to improve circular DNA multiple alignment.
    Fernandes F; Pereira L; Freitas AT
    BMC Bioinformatics; 2009 Jul; 10():230. PubMed ID: 19627599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time and memory efficient algorithm for extracting palindromic and repetitive subsequences in nucleic acid sequences.
    Tsunoda T; Fukagawa M; Takagi T
    Pac Symp Biocomput; 1999; ():202-13. PubMed ID: 10380198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new algorithm for detecting low-complexity regions in protein sequences.
    Shin SW; Kim SM
    Bioinformatics; 2005 Jan; 21(2):160-70. PubMed ID: 15333459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fast and memory efficient MLCS algorithm by character merging for DNA sequences alignment.
    Liu S; Wang Y; Tong W; Wei S
    Bioinformatics; 2020 Feb; 36(4):1066-1073. PubMed ID: 31584616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing Smith-Waterman alignments.
    Olsen R; Hwa T; Lässig M
    Pac Symp Biocomput; 1999; ():302-13. PubMed ID: 10380206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An algorithm for approximate tandem repeats.
    Landau GM; Schmidt JP; Sokol D
    J Comput Biol; 2001; 8(1):1-18. PubMed ID: 11339903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CLAGen: a tool for clustering and annotating gene sequences using a suffix tree algorithm.
    Han Si; Lee SG; Kim KH; Choi CJ; Kim YH; Hwang KS
    Biosystems; 2006 Jun; 84(3):175-82. PubMed ID: 16384634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autoregressive and iterative hidden Markov models for periodicity detection and solenoid structure recognition in protein sequences.
    Song NY; Yan H
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):436-41. PubMed ID: 24235115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactive software tool to comprehend the calculation of optimal sequence alignments with dynamic programming.
    Ibarra IL; Melo F
    Bioinformatics; 2010 Jul; 26(13):1664-5. PubMed ID: 20472540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.