These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24989859)

  • 41. Accurate anchoring alignment of divergent sequences.
    Huang W; Umbach DM; Li L
    Bioinformatics; 2006 Jan; 22(1):29-34. PubMed ID: 16301203
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Specialized microbial databases for inductive exploration of microbial genome sequences.
    Fang G; Ho C; Qiu Y; Cubas V; Yu Z; Cabau C; Cheung F; Moszer I; Danchin A
    BMC Genomics; 2005 Feb; 6():14. PubMed ID: 15698474
    [TBL] [Abstract][Full Text] [Related]  

  • 43. GramAlign: fast alignment driven by grammar-based phylogeny.
    Russell DJ
    Methods Mol Biol; 2014; 1079():171-89. PubMed ID: 24170402
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Using CLUSTAL for multiple sequence alignments.
    Higgins DG; Thompson JD; Gibson TJ
    Methods Enzymol; 1996; 266():383-402. PubMed ID: 8743695
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Super paramagnetic clustering of protein sequences.
    Tetko IV; Facius A; Ruepp A; Mewes HW
    BMC Bioinformatics; 2005 Apr; 6():82. PubMed ID: 15804359
    [TBL] [Abstract][Full Text] [Related]  

  • 46. TPRpred: a tool for prediction of TPR-, PPR- and SEL1-like repeats from protein sequences.
    Karpenahalli MR; Lupas AN; Söding J
    BMC Bioinformatics; 2007 Jan; 8():2. PubMed ID: 17199898
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of the Burrows-Wheeler Transform for searching for tandem repeats in DNA sequences.
    Pokrzywa R
    Int J Bioinform Res Appl; 2009; 5(4):432-46. PubMed ID: 19640830
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Alignment of protein interaction networks by integer quadratic programming.
    Li Z; Wang Y; Zhang S; Zhang XS; Chen L
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5527-30. PubMed ID: 17945906
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancing of Particle Swarm Optimization Based Method for Multiple Motifs Detection in DNA Sequences Collections.
    Som-In S; Kimpan W
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):990-998. PubMed ID: 30281475
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ABACAS: algorithm-based automatic contiguation of assembled sequences.
    Assefa S; Keane TM; Otto TD; Newbold C; Berriman M
    Bioinformatics; 2009 Aug; 25(15):1968-9. PubMed ID: 19497936
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel partial sequence alignment tool for finding large deletions.
    Aruk T; Ustek D; Kursun O
    ScientificWorldJournal; 2012; 2012():694813. PubMed ID: 22566777
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel algorithm and web-based tool for comparing two alternative phylogenetic trees.
    Nye TM; Liò P; Gilks WR
    Bioinformatics; 2006 Jan; 22(1):117-9. PubMed ID: 16234319
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SALSA: improved protein database searching by a new algorithm for assembly of sequence fragments into gapped alignments.
    Rognes T; Seeberg E
    Bioinformatics; 1998; 14(10):839-45. PubMed ID: 9927712
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SamSelect: a sample sequence selection algorithm for quorum planted motif search on large DNA datasets.
    Yu Q; Wei D; Huo H
    BMC Bioinformatics; 2018 Jun; 19(1):228. PubMed ID: 29914360
    [TBL] [Abstract][Full Text] [Related]  

  • 55. GANN: genetic algorithm neural networks for the detection of conserved combinations of features in DNA.
    Beiko RG; Charlebois RL
    BMC Bioinformatics; 2005 Feb; 6():36. PubMed ID: 15725347
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The URMS-RMS hybrid algorithm for fast and sensitive local protein structure alignment.
    Yona G; Kedem K
    J Comput Biol; 2005; 12(1):12-32. PubMed ID: 15725731
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Local sequence alignments with monotonic gap penalties.
    Mott R
    Bioinformatics; 1999 Jun; 15(6):455-62. PubMed ID: 10383814
    [TBL] [Abstract][Full Text] [Related]  

  • 58. PicXAA: a probabilistic scheme for finding the maximum expected accuracy alignment of multiple biological sequences.
    Sahraeian SM; Yoon BJ
    Methods Mol Biol; 2014; 1079():203-10. PubMed ID: 24170404
    [TBL] [Abstract][Full Text] [Related]  

  • 59. From analysis of protein structural alignments toward a novel approach to align protein sequences.
    Sunyaev SR; Bogopolsky GA; Oleynikova NV; Vlasov PK; Finkelstein AV; Roytberg MA
    Proteins; 2004 Feb; 54(3):569-82. PubMed ID: 14748004
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An algorithm based on graph theory for the assembly of contigs in physical mapping of DNA.
    Zhang P; Schon EA; Fischer SG; Cayanis E; Weiss J; Kistler S; Bourne PE
    Comput Appl Biosci; 1994 Jun; 10(3):309-17. PubMed ID: 7922688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.