BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24989972)

  • 1. A label-free DNAzyme-cleaving fluorescence method for the determination of trace Pb(2+) based on catalysis of AuPd nanoalloy on the reduction of rhodamine 6G.
    Tang M; Wen G; Luo Y; Kang C; Liang A; Jiang Z
    Luminescence; 2015 May; 30(3):296-302. PubMed ID: 24989972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of trace Pb(II) by a DNAzyme cracking-rhodamine 6G SERRS probe on Au(core)Ag(shell) nanosol substrate.
    Liu Q; Wei Y; Luo Y; Liang A; Jiang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():806-11. PubMed ID: 24704597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent aptasensor for 17β-estradiol determination based on gold nanoparticles quenching the fluorescence of Rhodamine B.
    Ni X; Xia B; Wang L; Ye J; Du G; Feng H; Zhou X; Zhang T; Wang W
    Anal Biochem; 2017 Apr; 523():17-23. PubMed ID: 28137603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melamine-Induced Decomposition and Anti-FRET Effect from a Self-Assembled Complex of Rhodamine 6G and DNA-Stabilized Silver Nanoclusters Used for Dual-Emitting Ratiometric and Naked-Eye-Visible Fluorescence Detection.
    Fu Y; Jin H; Bu X; Gui R
    J Agric Food Chem; 2018 Sep; 66(37):9819-9827. PubMed ID: 30160493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorometric determination of lead(II) by using aptamer-functionalized upconversion nanoparticles and magnetite-modified gold nanoparticles.
    Chen M; Hassan M; Li H; Chen Q
    Mikrochim Acta; 2020 Jan; 187(1):85. PubMed ID: 31897844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Fluorescence Sensor for Lead (II) Ions Determination Based on Label-Free Gold Nanoparticles (GNPs)-DNAzyme Using Time-Gated Mode in Aqueous Solution.
    Wang XY; Niu CG; Guo LJ; Hu LY; Wu SQ; Zeng GM; Li F
    J Fluoresc; 2017 Mar; 27(2):643-649. PubMed ID: 27909845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalysis of aptamer-modified AuPd nanoalloy probe and its application to resonance scattering detection of trace UO(2)2+.
    Liang A; Zhang Y; Fan Y; Chen C; Wen G; Liu Q; Kang C; Jiang Z
    Nanoscale; 2011 Aug; 3(8):3178-84. PubMed ID: 21677977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent aptasensor for ofloxacin detection based on the aggregation of gold nanoparticles and its effect on quenching the fluorescence of Rhodamine B.
    Yan Z; Yi H; Wang L; Zhou X; Yan R; Zhang D; Wang S; Su L; Zhou S
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Oct; 221():117203. PubMed ID: 31174139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Rhodamine-Based Fluorescent Chemosensor for the Detection of Pb
    Su W; Yuan S; Wang E
    J Fluoresc; 2017 Sep; 27(5):1871-1875. PubMed ID: 28577240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Fluorescence quenching assay of ultratrace horseradish peroxidase using rhodamine dye].
    Ma WS; Huang GX; Liang AH; Jiang ZL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):759-61. PubMed ID: 19455817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free DNAzyme-based fluorescing molecular switch for sensitive and selective detection of lead ions.
    Zhang L; Han B; Li T; Wang E
    Chem Commun (Camb); 2011 Mar; 47(11):3099-101. PubMed ID: 21258733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detachable nanoladders: A new method for signal identification and their application in the detection of ochratoxin A (OTA).
    Shao X; Zhu L; Feng Y; Zhang Y; Luo Y; Huang K; Xu W
    Anal Chim Acta; 2019 Dec; 1087():113-120. PubMed ID: 31585559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colorimetric and fluorescent chemosensor for citrate based on a rhodamine and Pb2+ complex in aqueous solution.
    Li CY; Zhou Y; Li YF; Kong XF; Zou CX; Weng C
    Anal Chim Acta; 2013 Apr; 774():79-84. PubMed ID: 23567120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple and sensitive resonance Rayleigh scattering method for determination of As(III) using aptamer-modified nanogold as a probe.
    Tang M; Wen G; Liang A; Jiang Z
    Luminescence; 2014 Sep; 29(6):603-8. PubMed ID: 24124025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Fluorescence Determination of Trace Se with the Hydride-K13-Rhodamine 6G System].
    Liang AH; Li Y; Huang SS; Luo YH; Wen GQ; Jiang ZL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 May; 35(5):1306-8. PubMed ID: 26415449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA branched junctions induced the enhanced fluorescence recovery of FAM-labeled probes on rGO for detecting Pb
    Wang J; Chen S; Yuan R; Hu F
    Anal Bioanal Chem; 2020 Apr; 412(11):2455-2463. PubMed ID: 32078003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enhanced fluorescence of rhodamine 6G on the assembled silver nanostructures.
    Liu G; Zheng H; Liu M; Zhang Z; Dong J; Yan X; Li X
    J Nanosci Nanotechnol; 2011 Nov; 11(11):9523-7. PubMed ID: 22413241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic resonance scattering spectral determination of ultratrace horseradish peroxidase using rhodamine S.
    Jiang Z; Liang Y; Huang G; Wei X; Liang A; Zhong F
    Luminescence; 2009; 24(3):144-9. PubMed ID: 19291809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous Sensitive Detection of Lead(II), Mercury(II) and Silver Ions Using a New Nucleic Acid-Based Fluorescence Sensor.
    Yuan D; Yinran C; Xiaodong Z
    Acta Chim Slov; 2018 Jun; 65(2):271-277. PubMed ID: 29993112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combing DNAzyme with single-walled carbon nanotubes for detection of Pb(II) in water.
    Yao J; Li J; Owens J; Zhong W
    Analyst; 2011 Feb; 136(4):764-8. PubMed ID: 21152621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.