These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 24990219)
1. O⁶-carboxymethylguanine DNA adduct formation and lipid peroxidation upon in vitro gastrointestinal digestion of haem-rich meat. Vanden Bussche J; Hemeryck LY; Van Hecke T; Kuhnle GG; Pasmans F; Moore SA; Van de Wiele T; De Smet S; Vanhaecke L Mol Nutr Food Res; 2014 Sep; 58(9):1883-96. PubMed ID: 24990219 [TBL] [Abstract][Full Text] [Related]
2. DNA adduct profiling of in vitro colonic meat digests to map red vs. white meat genotoxicity. Hemeryck LY; Rombouts C; De Paepe E; Vanhaecke L Food Chem Toxicol; 2018 May; 115():73-87. PubMed ID: 29458163 [TBL] [Abstract][Full Text] [Related]
3. Nitrite curing of chicken, pork, and beef inhibits oxidation but does not affect N-nitroso compound (NOC)-specific DNA adduct formation during in vitro digestion. Van Hecke T; Vanden Bussche J; Vanhaecke L; Vossen E; Van Camp J; De Smet S J Agric Food Chem; 2014 Feb; 62(8):1980-8. PubMed ID: 24499368 [TBL] [Abstract][Full Text] [Related]
4. Red meat enhances the colonic formation of the DNA adduct O6-carboxymethyl guanine: implications for colorectal cancer risk. Lewin MH; Bailey N; Bandaletova T; Bowman R; Cross AJ; Pollock J; Shuker DE; Bingham SA Cancer Res; 2006 Feb; 66(3):1859-65. PubMed ID: 16452248 [TBL] [Abstract][Full Text] [Related]
5. An approach based on ultra-high pressure liquid chromatography-tandem mass spectrometry to quantify O6-methyl and O6-carboxymethylguanine DNA adducts in intestinal cell lines. Vanden Bussche J; Moore SA; Pasmans F; Kuhnle GG; Vanhaecke L J Chromatogr A; 2012 Sep; 1257():25-33. PubMed ID: 22921361 [TBL] [Abstract][Full Text] [Related]
6. Fat content and nitrite-curing influence the formation of oxidation products and NOC-specific DNA adducts during in vitro digestion of meat. Van Hecke T; Vossen E; Vanden Bussche J; Raes K; Vanhaecke L; De Smet S PLoS One; 2014; 9(6):e101122. PubMed ID: 24978825 [TBL] [Abstract][Full Text] [Related]
7. Formation of Malondialdehyde, 4-Hydroxynonenal, and 4-Hydroxyhexenal during in Vitro Digestion of Cooked Beef, Pork, Chicken, and Salmon. Steppeler C; Haugen JE; Rødbotten R; Kirkhus B J Agric Food Chem; 2016 Jan; 64(2):487-96. PubMed ID: 26654171 [TBL] [Abstract][Full Text] [Related]
8. Hemeryck LY; Rombouts C; Hecke TV; Van Meulebroek L; Bussche JV; De Smet S; Vanhaecke L Toxicol Res (Camb); 2016 Sep; 5(5):1346-1358. PubMed ID: 30090439 [TBL] [Abstract][Full Text] [Related]
9. Development of a liquid chromatography/tandem mass spectrometry method to investigate the presence of biomarkers of DNA damage in urine related to red meat consumption and risk of colorectal cancer. Da Pieve C; Sahgal N; Moore SA; Velasco-Garcia MN Rapid Commun Mass Spectrom; 2013 Nov; 27(21):2493-503. PubMed ID: 24097406 [TBL] [Abstract][Full Text] [Related]
10. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cross AJ; Pollock JR; Bingham SA Cancer Res; 2003 May; 63(10):2358-60. PubMed ID: 12750250 [TBL] [Abstract][Full Text] [Related]
11. Does increased endogenous formation of N-nitroso compounds in the human colon explain the association between red meat and colon cancer? Bingham SA; Pignatelli B; Pollock JR; Ellul A; Malaveille C; Gross G; Runswick S; Cummings JH; O'Neill IK Carcinogenesis; 1996 Mar; 17(3):515-23. PubMed ID: 8631138 [TBL] [Abstract][Full Text] [Related]
12. A Chemical Link between Meat Consumption and Colorectal Cancer Development? Aloisi CMN; Sandell ES; Sturla SJ Chem Res Toxicol; 2021 Jan; 34(1):12-23. PubMed ID: 33417435 [No Abstract] [Full Text] [Related]
13. Increased oxidative and nitrosative reactions during digestion could contribute to the association between well-done red meat consumption and colorectal cancer. Van Hecke T; Vossen E; Hemeryck LY; Vanden Bussche J; Vanhaecke L; De Smet S Food Chem; 2015 Nov; 187():29-36. PubMed ID: 25976994 [TBL] [Abstract][Full Text] [Related]
14. Lipid peroxidation-induced putative malondialdehyde-DNA adducts in human breast tissues. Wang M; Dhingra K; Hittelman WN; Liehr JG; de Andrade M; Li D Cancer Epidemiol Biomarkers Prev; 1996 Sep; 5(9):705-10. PubMed ID: 8877062 [TBL] [Abstract][Full Text] [Related]
15. Endogenous N-nitroso compounds, and their precursors, present in bacon, do not initiate or promote aberrant crypt foci in the colon of rats. Parnaud G; Pignatelli B; Peiffer G; Taché S; Corpet DE Nutr Cancer; 2000; 38(1):74-80. PubMed ID: 11341048 [TBL] [Abstract][Full Text] [Related]
16. DNA adductomics to study the genotoxic effects of red meat consumption with and without added animal fat in rats. Hemeryck LY; Van Hecke T; Vossen E; De Smet S; Vanhaecke L Food Chem; 2017 Sep; 230():378-387. PubMed ID: 28407925 [TBL] [Abstract][Full Text] [Related]
17. Red Meat-Derived Nitroso Compounds, Lipid Peroxidation Products and Colorectal Cancer. Steinberg P Foods; 2019 Jul; 8(7):. PubMed ID: 31336781 [TBL] [Abstract][Full Text] [Related]
18. The effect of haem in red and processed meat on the endogenous formation of N-nitroso compounds in the upper gastrointestinal tract. Lunn JC; Kuhnle G; Mai V; Frankenfeld C; Shuker DE; Glen RC; Goodman JM; Pollock JR; Bingham SA Carcinogenesis; 2007 Mar; 28(3):685-90. PubMed ID: 17052997 [TBL] [Abstract][Full Text] [Related]
19. Red meat and colorectal cancer risk: the effect of dietary iron and haem on endogenous N-nitrosation. Cross AJ; Pollock JR; Bingham SA IARC Sci Publ; 2002; 156():205-6. PubMed ID: 12484166 [No Abstract] [Full Text] [Related]
20. Consumption of Red/Processed Meat and Colorectal Carcinoma: Possible Mechanisms Underlying the Significant Association. Hammerling U; Bergman Laurila J; Grafström R; Ilbäck NG Crit Rev Food Sci Nutr; 2016; 56(4):614-34. PubMed ID: 25849747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]