BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 24990374)

  • 1. Spatial confinement is a major determinant of the folding landscape of human chromosomes.
    Gürsoy G; Xu Y; Kenter AL; Liang J
    Nucleic Acids Res; 2014 Jul; 42(13):8223-30. PubMed ID: 24990374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational predictions of structures of multichromosomes of budding yeast.
    Gürsoy G; Xu Y; Liang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3945-8. PubMed ID: 25570855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially confined folding of chromatin in the interphase nucleus.
    Mateos-Langerak J; Bohn M; de Leeuw W; Giromus O; Manders EM; Verschure PJ; Indemans MH; Gierman HJ; Heermann DW; van Driel R; Goetze S
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3812-7. PubMed ID: 19234129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation of replicated segments of chromosome fibres in human S-phase nucleus.
    Solovjeva L; Svetlova M; Stein G; Chagin V; Rozanov Y; Zannis-Hadjopoulos M; Price G; Tomilin N
    Chromosome Res; 1998 Dec; 6(8):595-602. PubMed ID: 10099872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topology, structures, and energy landscapes of human chromosomes.
    Zhang B; Wolynes PG
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6062-7. PubMed ID: 25918364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructing spatial organizations of chromosomes through manifold learning.
    Zhu G; Deng W; Hu H; Ma R; Zhang S; Yang J; Peng J; Kaplan T; Zeng J
    Nucleic Acids Res; 2018 May; 46(8):e50. PubMed ID: 29408992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.
    Di Pierro M; Cheng RR; Lieberman Aiden E; Wolynes PG; Onuchic JN
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12126-12131. PubMed ID: 29087948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale 3D chromatin reconstruction from chromosomal contacts.
    Zhang Y; Liu W; Lin Y; Ng YK; Li S
    BMC Genomics; 2019 Apr; 20(Suppl 2):186. PubMed ID: 30967119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chain organization of human interphase chromosome determines the spatiotemporal dynamics of chromatin loci.
    Liu L; Shi G; Thirumalai D; Hyeon C
    PLoS Comput Biol; 2018 Dec; 14(12):e1006617. PubMed ID: 30507936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin folding: from linear chromosomes to the 4D nucleus.
    Cheutin T; Bantignies F; Leblanc B; Cavalli G
    Cold Spring Harb Symp Quant Biol; 2010; 75():461-73. PubMed ID: 21447815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive mapping of long-range interactions reveals folding principles of the human genome.
    Lieberman-Aiden E; van Berkum NL; Williams L; Imakaev M; Ragoczy T; Telling A; Amit I; Lajoie BR; Sabo PJ; Dorschner MO; Sandstrom R; Bernstein B; Bender MA; Groudine M; Gnirke A; Stamatoyannopoulos J; Mirny LA; Lander ES; Dekker J
    Science; 2009 Oct; 326(5950):289-93. PubMed ID: 19815776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What's in the "fold"?
    Mehra P; Kalani A
    Life Sci; 2018 Oct; 211():118-125. PubMed ID: 30213728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph rigidity reveals well-constrained regions of chromosome conformation embeddings.
    Duggal G; Kingsford C
    BMC Bioinformatics; 2012 Sep; 13():241. PubMed ID: 22998471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Scalable Computational Approach for Simulating Complexes of Multiple Chromosomes.
    Oliveira Junior AB; Contessoto VG; Mello MF; Onuchic JN
    J Mol Biol; 2021 Mar; 433(6):166700. PubMed ID: 33160979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Looping probabilities in model interphase chromosomes.
    Rosa A; Becker NB; Everaers R
    Biophys J; 2010 Jun; 98(11):2410-9. PubMed ID: 20513384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin Conformation Capture-Based Analysis of Nuclear Architecture.
    Grob S; Grossniklaus U
    Methods Mol Biol; 2017; 1456():15-32. PubMed ID: 27770354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer physics of chromosome large-scale 3D organisation.
    Chiariello AM; Annunziatella C; Bianco S; Esposito A; Nicodemi M
    Sci Rep; 2016 Jul; 6():29775. PubMed ID: 27405443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking Chromatin Fibers to Gene Folding by Hierarchical Looping.
    Bascom G; Schlick T
    Biophys J; 2017 Feb; 112(3):434-445. PubMed ID: 28153411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic evaluation of chromosome conformation capture assays.
    Akgol Oksuz B; Yang L; Abraham S; Venev SV; Krietenstein N; Parsi KM; Ozadam H; Oomen ME; Nand A; Mao H; Genga RMJ; Maehr R; Rando OJ; Mirny LA; Gibcus JH; Dekker J
    Nat Methods; 2021 Sep; 18(9):1046-1055. PubMed ID: 34480151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.