These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 24990472)
21. A simple method for genomic selection of moderately sized dairy cattle populations. Weller JI; Ron M; Glick G; Shirak A; Zeron Y; Ezra E Animal; 2012 Feb; 6(2):193-202. PubMed ID: 22436176 [TBL] [Abstract][Full Text] [Related]
22. Genetic progress in multistage dairy cattle breeding schemes using genetic markers. Schrooten C; Bovenhuis H; van Arendonk JA; Bijma P J Dairy Sci; 2005 Apr; 88(4):1569-81. PubMed ID: 15778327 [TBL] [Abstract][Full Text] [Related]
23. Estimates of missing heritability for complex traits in Brown Swiss cattle. Román-Ponce SI; Samoré AB; Dolezal MA; Bagnato A; Meuwissen TH Genet Sel Evol; 2014 Jun; 46(1):36. PubMed ID: 24898214 [TBL] [Abstract][Full Text] [Related]
24. High-frequency marker haplotypes in the genomic selection of dairy cattle. Mucha A; Wierzbicki H; Kamiński S; Oleński K; Hering D J Appl Genet; 2019 May; 60(2):179-186. PubMed ID: 30877657 [TBL] [Abstract][Full Text] [Related]
25. Effects of genomic selection on genetic improvement, inbreeding, and merit of young versus proven bulls. de Roos AP; Schrooten C; Veerkamp RF; van Arendonk JA J Dairy Sci; 2011 Mar; 94(3):1559-67. PubMed ID: 21338821 [TBL] [Abstract][Full Text] [Related]
26. Genotyping more cows increases genetic gain and reduces rate of true inbreeding in a dairy cattle breeding scheme using female reproductive technologies. Thomasen JR; Liu H; Sørensen AC J Dairy Sci; 2020 Jan; 103(1):597-606. PubMed ID: 31733861 [TBL] [Abstract][Full Text] [Related]
27. Pedigree verification and parentage assignment using genomic information in the Mexican Holstein population. García-Ruiz A; Wiggans GR; Ruiz-López FJ J Dairy Sci; 2019 Feb; 102(2):1806-1810. PubMed ID: 30591329 [TBL] [Abstract][Full Text] [Related]
28. Estimation of genetic parameters and breeding values for feed intake and energy balance using pedigree relationships or single-step genomic evaluation in Holstein Friesian cows. Harder I; Stamer E; Junge W; Thaller G J Dairy Sci; 2020 Mar; 103(3):2498-2513. PubMed ID: 31864743 [TBL] [Abstract][Full Text] [Related]
29. Genomic selection using low density marker panels with application to a sire line in pigs. Wellmann R; Preuß S; Tholen E; Heinkel J; Wimmers K; Bennewitz J Genet Sel Evol; 2013 Jul; 45(1):28. PubMed ID: 23895218 [TBL] [Abstract][Full Text] [Related]
30. Genomic prediction using pooled data in a single-step genomic best linear unbiased prediction framework. Baller JL; Kachman SD; Kuehn LA; Spangler ML J Anim Sci; 2020 Jun; 98(6):. PubMed ID: 32497209 [TBL] [Abstract][Full Text] [Related]
31. Optimised parent selection and minimum inbreeding mating in small aquaculture breeding schemes: a simulation study. Hely FS; Amer PR; Walker SP; Symonds JE Animal; 2013 Jan; 7(1):1-10. PubMed ID: 23031385 [TBL] [Abstract][Full Text] [Related]
32. Simulation study on the efficiencies of MOET nucleus breeding schemes applying marker assisted selection in dairy cattle. Luo W; Wang Y; Zhang Y Sci China C Life Sci; 2009 Mar; 52(3):296-306. PubMed ID: 19294355 [TBL] [Abstract][Full Text] [Related]
33. Optimizing the design of small-sized nucleus breeding programs for dairy cattle with minimal performance recording. Kariuki CM; Komen H; Kahi AK; van Arendonk JA J Dairy Sci; 2014 Dec; 97(12):7963-74. PubMed ID: 25282422 [TBL] [Abstract][Full Text] [Related]
34. Considering genetic characteristics in German Holstein breeding programs. Segelke D; Täubert H; Reinhardt F; Thaller G J Dairy Sci; 2016 Jan; 99(1):458-67. PubMed ID: 26601581 [TBL] [Abstract][Full Text] [Related]
35. Visualization of the transmission of direct genomic values for paternal and maternal chromosomes for 15 traits in US Brown Swiss, Holstein, and Jersey cattle. Cole JB; Null DJ J Dairy Sci; 2013 Apr; 96(4):2713-2726. PubMed ID: 23375973 [TBL] [Abstract][Full Text] [Related]
36. Genomic selection for tolerance to heat stress in Australian dairy cattle. Nguyen TTT; Bowman PJ; Haile-Mariam M; Pryce JE; Hayes BJ J Dairy Sci; 2016 Apr; 99(4):2849-2862. PubMed ID: 27037467 [TBL] [Abstract][Full Text] [Related]
37. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population. Ma P; Lund MS; Aamand GP; Su G J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255 [TBL] [Abstract][Full Text] [Related]
38. Reliability of breeding values for feed intake and feed efficiency traits in dairy cattle: When dry matter intake recordings are sparse under different scenarios. Negussie E; Mehtiö T; Mäntysaari P; Løvendahl P; Mäntysaari EA; Lidauer MH J Dairy Sci; 2019 Aug; 102(8):7248-7262. PubMed ID: 31155258 [TBL] [Abstract][Full Text] [Related]
39. Confirmation and discovery of maternal grandsires and great-grandsires in dairy cattle. VanRaden PM; Cooper TA; Wiggans GR; O'Connell JR; Bacheller LR J Dairy Sci; 2013 Mar; 96(3):1874-9. PubMed ID: 23332849 [TBL] [Abstract][Full Text] [Related]
40. Fixed-length haplotypes can improve genomic prediction accuracy in an admixed dairy cattle population. Hess M; Druet T; Hess A; Garrick D Genet Sel Evol; 2017 Jul; 49(1):54. PubMed ID: 28673233 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]