These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24990582)

  • 1. Polygermanes: bandgap engineering via tensile strain and side-chain substitution.
    Fa W; Zeng XC
    Chem Commun (Camb); 2014 Aug; 50(65):9126-9. PubMed ID: 24990582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the electronic properties of transition-metal trichalcogenides via tensile strain.
    Li M; Dai J; Zeng XC
    Nanoscale; 2015 Oct; 7(37):15385-91. PubMed ID: 26332584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field.
    Lu N; Guo H; Li L; Dai J; Wang L; Mei WN; Wu X; Zeng XC
    Nanoscale; 2014 Mar; 6(5):2879-86. PubMed ID: 24473269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semiconductor to metal transition in bilayer phosphorene under normal compressive strain.
    Manjanath A; Samanta A; Pandey T; Singh AK
    Nanotechnology; 2015 Feb; 26(7):075701. PubMed ID: 25609574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Band structure of Si/Ge core-shell nanowires along the [110] direction modulated by external uniaxial strain.
    Peng X; Tang F; Logan P
    J Phys Condens Matter; 2011 Mar; 23(11):115502. PubMed ID: 21358032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study.
    Peng X; Tang F; Copple A
    J Phys Condens Matter; 2012 Feb; 24(7):075501. PubMed ID: 22297686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable electronic and optical properties of monolayer silicane under tensile strain: a many-body study.
    Shu H; Wang S; Li Y; Yip J; Wang J
    J Chem Phys; 2014 Aug; 141(6):064707. PubMed ID: 25134590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Theoretical Study of Armchair Antimonene Nanoribbons in the Presence of Uniaxial Strain Based on First-Principles Calculations.
    Yazdanpanah Goharrizi A; Barzoki AM; Selberherr S; Filipovic L
    ACS Appl Electron Mater; 2023 Aug; 5(8):4514-4522. PubMed ID: 37637974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bandgap engineering and manipulating electronic and optical properties of ZnO nanowires by uniaxial strain.
    Shao RW; Zheng K; Wei B; Zhang YF; Li YJ; Han XD; Zhang Z; Zou J
    Nanoscale; 2014 May; 6(9):4936-41. PubMed ID: 24676099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep elastic strain engineering of bandgap through machine learning.
    Shi Z; Tsymbalov E; Dao M; Suresh S; Shapeev A; Li J
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4117-4122. PubMed ID: 30770444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of strain on the electronic, optical, and ferroelectric transition properties of HfO
    Wu J
    J Phys Condens Matter; 2021 Jun; 33(29):. PubMed ID: 33975286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain Effects on the Electronic and Optical Properties of Blue Phosphorene.
    Zhang L; Cui Z
    Front Chem; 2022; 10():951870. PubMed ID: 35873045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inducing novel electronic properties in <112> Ge nanowires by means of variations in their size, shape and strain: a first-principles computational study.
    Zhang C; De Sarkar A; Zhang RQ
    J Phys Condens Matter; 2012 Jan; 24(1):015301. PubMed ID: 22133518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Investigation of Biaxially Tensile-Strained Germanium Nanowires.
    Zhu Z; Song Y; Chen Q; Zhang Z; Zhang L; Li Y; Wang S
    Nanoscale Res Lett; 2017 Dec; 12(1):472. PubMed ID: 28759987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional silicon bismotide (SiBi) monolayer with a honeycomb-like lattice: first-principles study of tuning the electronic properties.
    Bafekry A; Shojaei F; Obeid MM; Ghergherehchi M; Nguyen C; Oskouian M
    RSC Adv; 2020 Aug; 10(53):31894-31900. PubMed ID: 35518134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable electronic properties of the novel g-ZnO/1T-TiS
    Rahimi K
    Phys Chem Chem Phys; 2020 Apr; 22(14):7412-7420. PubMed ID: 32215418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring the electronic, thermal and optical properties of two-dimensional MoO
    Ersan F; Sarikurt S
    Phys Chem Chem Phys; 2019 Sep; 21(36):19904-19914. PubMed ID: 31475268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional Kagome phosphorus and its edge magnetism: a density functional theory study.
    Yu G; Jiang L; Zheng Y
    J Phys Condens Matter; 2015 Jul; 27(25):255006. PubMed ID: 26020446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of the bandgap regulation of a two-dimensional GeSn alloy under biaxial strain and uniaxial strain along the armchair direction.
    Huang W; Yang H; Cheng B; Xue C
    Phys Chem Chem Phys; 2018 Sep; 20(36):23344-23351. PubMed ID: 30175833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain-tunable electronic structures and optical properties of semiconducting MXenes.
    Cui J; Peng Q; Zhou J; Sun Z
    Nanotechnology; 2019 Aug; 30(34):345205. PubMed ID: 31051476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.