These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 24990610)
21. Proofreading of substrate structure by the Twin-Arginine Translocase is highly dependent on substrate conformational flexibility but surprisingly tolerant of surface charge and hydrophobicity changes. Jones AS; Austerberry JI; Dajani R; Warwicker J; Curtis R; Derrick JP; Robinson C Biochim Biophys Acta; 2016 Dec; 1863(12):3116-3124. PubMed ID: 27619192 [TBL] [Abstract][Full Text] [Related]
22. CROSSalive: a web server for predicting the in vivo structure of RNA molecules. Ponti RD; Armaos A; Vandelli A; Tartaglia GG Bioinformatics; 2020 Feb; 36(3):940-941. PubMed ID: 31504168 [TBL] [Abstract][Full Text] [Related]
23. The cleverSuite approach for protein characterization: predictions of structural properties, solubility, chaperone requirements and RNA-binding abilities. Klus P; Bolognesi B; Agostini F; Marchese D; Zanzoni A; Tartaglia GG Bioinformatics; 2014 Jun; 30(11):1601-8. PubMed ID: 24493033 [TBL] [Abstract][Full Text] [Related]
24. A support vector machine-based method for predicting the propensity of a protein to be soluble or to form inclusion body on overexpression in Escherichia coli. Idicula-Thomas S; Kulkarni AJ; Kulkarni BD; Jayaraman VK; Balaji PV Bioinformatics; 2006 Feb; 22(3):278-84. PubMed ID: 16332713 [TBL] [Abstract][Full Text] [Related]
25. EPSOL: sequence-based protein solubility prediction using multidimensional embedding. Wu X; Yu L Bioinformatics; 2021 Dec; 37(23):4314-4320. PubMed ID: 34145885 [TBL] [Abstract][Full Text] [Related]
26. Integrative FourD omics approach profiles the target network of the carbon storage regulatory system. Sowa SW; Gelderman G; Leistra AN; Buvanendiran A; Lipp S; Pitaktong A; Vakulskas CA; Romeo T; Baldea M; Contreras LM Nucleic Acids Res; 2017 Feb; 45(4):1673-1686. PubMed ID: 28126921 [TBL] [Abstract][Full Text] [Related]
27. Proteome-wide subcellular topologies of E. coli polypeptides database (STEPdb). Orfanoudaki G; Economou A Mol Cell Proteomics; 2014 Dec; 13(12):3674-87. PubMed ID: 25210196 [TBL] [Abstract][Full Text] [Related]
28. SODA: prediction of protein solubility from disorder and aggregation propensity. Paladin L; Piovesan D; Tosatto SCE Nucleic Acids Res; 2017 Jul; 45(W1):W236-W240. PubMed ID: 28505312 [TBL] [Abstract][Full Text] [Related]
29. Low-level expression of a folding-incompetent protein in Escherichia coli: search for the molecular determinants of protein aggregation in vivo. Winkelmann J; Calloni G; Campioni S; Mannini B; Taddei N; Chiti F J Mol Biol; 2010 May; 398(4):600-13. PubMed ID: 20346957 [TBL] [Abstract][Full Text] [Related]
30. P3DOCK: a protein-RNA docking webserver based on template-based and template-free docking. Zheng J; Hong X; Xie J; Tong X; Liu S Bioinformatics; 2020 Jan; 36(1):96-103. PubMed ID: 31173056 [TBL] [Abstract][Full Text] [Related]
31. Aggregation gatekeepers modulate protein homeostasis of aggregating sequences and affect bacterial fitness. Beerten J; Jonckheere W; Rudyak S; Xu J; Wilkinson H; De Smet F; Schymkowitz J; Rousseau F Protein Eng Des Sel; 2012 Jul; 25(7):357-66. PubMed ID: 22706763 [TBL] [Abstract][Full Text] [Related]
32. catRAPID omics v2.0: going deeper and wider in the prediction of protein-RNA interactions. Armaos A; Colantoni A; Proietti G; Rupert J; Tartaglia GG Nucleic Acids Res; 2021 Jul; 49(W1):W72-W79. PubMed ID: 34086933 [TBL] [Abstract][Full Text] [Related]
33. CoSMoS: Conserved Sequence Motif Search in the proteome. Liu XI; Korde N; Jakob U; Leichert LI BMC Bioinformatics; 2006 Jan; 7():37. PubMed ID: 16433915 [TBL] [Abstract][Full Text] [Related]
34. Qupe--a Rich Internet Application to take a step forward in the analysis of mass spectrometry-based quantitative proteomics experiments. Albaum SP; Neuweger H; Fränzel B; Lange S; Mertens D; Trötschel C; Wolters D; Kalinowski J; Nattkemper TW; Goesmann A Bioinformatics; 2009 Dec; 25(23):3128-34. PubMed ID: 19808875 [TBL] [Abstract][Full Text] [Related]
35. An automatable screen for the rapid identification of proteins amenable to refolding. Cowieson NP; Wensley B; Listwan P; Hume DA; Kobe B; Martin JL Proteomics; 2006 Mar; 6(6):1750-7. PubMed ID: 16475229 [TBL] [Abstract][Full Text] [Related]
36. Prediction of Solubility of Proteins in Escherichia coli Based on Functional and Structural Features Using Machine Learning Methods. Huang F; Gao Q; Zhou X; Guo W; Feng K; Zhu L; Huang T; Cai YD Protein J; 2024 Oct; 43(5):983-996. PubMed ID: 39243320 [TBL] [Abstract][Full Text] [Related]
37. ESPRESSO: a system for estimating protein expression and solubility in protein expression systems. Hirose S; Noguchi T Proteomics; 2013 May; 13(9):1444-56. PubMed ID: 23436767 [TBL] [Abstract][Full Text] [Related]
38. Strategies for structural proteomics of prokaryotes: Quantifying the advantages of studying orthologous proteins and of using both NMR and X-ray crystallography approaches. Savchenko A; Yee A; Khachatryan A; Skarina T; Evdokimova E; Pavlova M; Semesi A; Northey J; Beasley S; Lan N; Das R; Gerstein M; Arrowmith CH; Edwards AM Proteins; 2003 Feb; 50(3):392-9. PubMed ID: 12557182 [TBL] [Abstract][Full Text] [Related]
39. NetSolP: predicting protein solubility in Escherichia coli using language models. Thumuluri V; Martiny HM; Almagro Armenteros JJ; Salomon J; Nielsen H; Johansen AR Bioinformatics; 2022 Jan; 38(4):941-946. PubMed ID: 35088833 [TBL] [Abstract][Full Text] [Related]
40. How to find soluble proteins: a comprehensive analysis of alpha/beta hydrolases for recombinant expression in E. coli. Koschorreck M; Fischer M; Barth S; Pleiss J BMC Genomics; 2005 Apr; 6():49. PubMed ID: 15804363 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]